
Serie UNIFLEX Advanced

- 1 Universal-Anschlusselement (UMB) mit integrierbarem Zugentlastungskamm
- 2 Bauarten mit innen oder außen aufklappbaren Stegen
- 3 Blitzschnell und einfach zu öffnen

- durch Kugelgelenk-Mechanik
- 4 Aufbau-Rahmensted
- 5 Einteilige Kettenglieder (Bauart 020)
- 6 Günstiges Verhältnis von Innen- zu Außenhreite
- 7 Vielfältige Separierungsmöalichkeiten der Leitungen
- 8 Robustes doppeltes Anschlagsystem für große freitragende Längen
- 9 Einfache Trennstegfixierung
- 10 Sehr leise durch interne Geräuschdämpfung
- 11 Seitliche Verschleißflächen.
- 12 Einteilige Anschlusswinkel mit integrierbarem Zugentlastungs-

Eigenschaften

- » Große freitragende Längen
- » Hohe Torsionssteifigkeit
- » Gutes Verhältnis von Innen- zu Außenbreite
- » Zahlreiche Sondermaterialien für Spezialanwendungen möglich
- » Einfache Montage und schnelle Leitungsbelegung
- » Montagewerkzeuge erhältlich
- » Beidseitig zu öffnende Stege mit Kugelgelenk
- » Vielfältige Innenaufteilungsmöglichkeiten

Fixierbare Trennstege für auf der Seite liegende Anordnungen und Anwendungen mit großen Querbeschleunigungen - keine zusätzlichen Abstandhalter notwendig

Seitliche Verschleißflächen - für lange Lebensdauer bei auf der Seite liegenden Anwendungen

Einfache Fixierung von Zugentlastungskamm oder C-Schiene im Anschluss

Energieketten

Kettenkonfiguration

Konstruktionsrichtlinien

informationen

Serie MONO

Serie IKP35

Serie TKK

Serie UNIFLEX Advanced | Übersicht

Änderungen vorbehalten.

				21. 1:					c. "						ı	
	Verfahr- weg ≤[m]	ende And v _{max} ≤ [m/s]	a _{max} ≤ [m/s ²]	Verfahr- weg ≤[m]	v _{max} ≤[m/s]	a _{max} ≤ [m/s ²]	TSO	TS1	rfteilung TS2	TS3	vertikal hängend oder stehend	auf der Seite liegend	Drehbewegung	Seite		Energieketten
			G			Ca	U-B-B-U	U -1-1 U	U		ver					-l ation
	1,6	10	50	60	3	30	•	-	-	-	•	•	٠	152		Ketten- konfiguration
																Konstruktions- richtlinien
	2,9	10	50	80	2,5	25	•	-	-	-	•	•	•	158		Material- informationen
																e 0
	4,8	10	50	120	2,5	20	•	-	-	•	•	•	•	164		Serie MONO
	4,8	10	50	120	2,5	20	•	•	-	•	•	•	•	165		
	4,8	10	50	_	-	-	•	•	-	•	•	•	•	166		Serie QuickTrax®
	0.7	0		105	7	00										S Quic
	6,3	9	45	125	3	20	•			•	•	•	•	174		
	6,3	9	45	125	3	20	•	•	_	•	•	•	•	175		Serie UNIFLEX Advanced
	6,3	9	45	-	-	_	•	•	_	•	•	•	•	176		~ 5 A
	7	8	40	150	3	15	_			_				107		
		 8	40		3							•		184		Serie TKP35
				150		15	•			•		•	•	185	-	
	7	8	40	-	-	-	•	•		•	•	•	•	186		ص ح
ehalten.	7	8	40	150	3	15	•	•	_	•	•	•	_	188		Serie TKK
Änderungen vorbehalten.	7	8	40	150	3	15	•	•		•	•	•	-	190		
Änderur																ie ax

Serie UNIFLEX Advanced | Übersicht

Energieketten

Kettenkonfiguration

Konstruktionsrichtlinien

Materialinformationen

Serie MONO

Serie UNIFLEX Advanced | Übersicht

Serie QuickTrax®

Serie UNIFLEX Advanced

Serie TKP35

Serie TKK

Serie EasyTrax®

Serie UNIFLEX Advanced | Übersicht

Freitrag	ende Ano	rdnung	Gleiten	de Anord	Inung		Innenau	ıfteilung		Bewegung			Seite
$\begin{array}{c} \text{Verfahr-} \\ \text{weg} \\ \leq [m] \end{array}$	v _{max} ≤[m/s]	a_{max} ≤[m/s ²]	$\begin{array}{c} \text{Verfahr-} \\ \text{weg} \\ \leq [m] \end{array}$	v _{max} ≤[m/s]	a_{max} ≤[m/s ²]	TS0	TS1	TS2	TS3	vertikal hängend oder stehend	auf der Seite liegend	Drehbewegung	Š
								H		vertika ode	an	Drehk	
6,8	10	35	200	3	8	•	-	-	•	•	•	•	198
6,8	10	35	200	3	8	•	•	-	•	•	•	•	199
6,8	10	35	200	3	8	•	•	-	•	•	•	•	200
9	10	25	200	8	20	•	-	-	•	•	•	•	206
9	10	25	200	8	20	•	•	_	•	•	•	•	207
9	10	25	200	8	20	•	•	_	•	•	•	•	208
9	10	25	200	8	20	•	•	-	•	•	•	•	209

EasyTrax®

UA1250

Innenhöhe 17,5 mm

Innenbreiten 30 – 50 mm

Krümmungsradien 28 – 100 mm

Anderungen vorbehalten.

Stegbauarten

Bauart 020

Geschlossener Rahmen

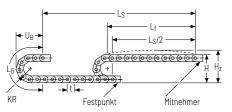
- » Gewichtsoptimierter, geschlossener Kunststoffrahmen mit besonders hoher Torsionssteifigkeit.
- » Außen/Innen: Nicht zu öffnen.

QuickTrax® | EasyTrax®

Für eine öffenbare Energieführung mit der Innenhöhe 16,5 – 17,6 mm empfehlen wir die Serien QuickTrax® oder EasyTrax®

QT0250 ab Seite 132 und ET0250 ab Seite 246.

Konstruktions-richtlinien


Serie MONO

Serie KP35

Serie TKK

UA1250 | Einbaumaße | Freitragend

Freitragende Anordnung

KR [mm]	H [mm]	H _z [mm]	L _B [mm]	U _B [mm]
28	79	104	138	65
38	99	124	169	75
45	113	138	191	82
60	143	168	238	97
75	173	198	286	112
100	223	248	364	137

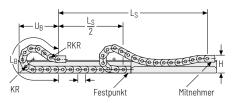
Belastungsdiagramm für freitragende Länge

in Abhängigkeit von der Zusatzlast.

Bei längeren Verfahrwegen ist ein Durchhang der Energieführung je nach Einsatzfall technisch zulässig.

Ketteneigengewicht $q_k = 0.36 \text{ kg/m}$ bei $B_i 50 \text{ mm}$. Bei abweichender Innenbreite verändert sich die maximale Zusatzlast.

Geschwindigkeit bis 10 m/s



Verfahrweg bis 1,6 m

Zusatzlast bis 4 ka/m

Gleitende Anordnung

Geschwindigkeit bis 3 m/s

Beschleunigung bis 30 m/s²

Die gleitende Energieführung muss in einem Kanal geführt werden. Siehe S. 866.

Verfahrweg bis 60 m

Zusatzlast bis 4 kg/m

nergieketten

Kettenkonfiguration

Konstruktionsrichtlinien

Materialinformationen

Serie MONO

Serie uickTrax®

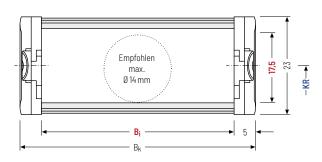
Serie UNIFLEX Advanced

Serie TKP35

Serie TKK

Serie asyTrax®

Stegbauart 020 – geschlossener Rahmen


- » Gewichtsoptimierter, geschlossener Kunststoffrahmen mit besonders hoher Torsionssteifigkeit.
- » Außen/Innen: Nicht zu öffnen.

Steganordnung an jedem Kettenglied **(VS: vollstegig)**

Der maximale Leitungsdurchmesser ist stark abhängig vom Krümmungsradius und dem gewünschten Leitungstyp. Bitte sprechen Sie uns an.

Berechnung der Kettenlänge

Kettenlänge L_k

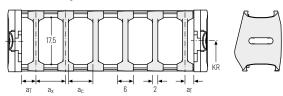
$$L_k \approx \frac{L_S}{2} + L_B$$

Kettenlänge L_k aufgerundet auf Teilung t

h _i [mm]	h _G [mm]	B i [mm]	B_k [mm]			[KR mm]				q k [kg/m]
17,5	23	30 50	B _i + 10	28	38	45		60	75	-	100	0,32 - 0,36

UA1250.020 | Innenaufteilung | TS0

Trennstegsysteme


Montiert wird das Trennstegsystem standardmäßig an jedem 2. Kettenglied.

Standardmäßig sind Trennstege bzw. das komplette Trennstegsystem (Trennstege mit Höhenseparierungen) im Ouerschnitt verschiebbar (Version A). Für Anwendungen mit Querbeschleunigungen und auf der Seite liegende Anwendungen sind die Trennstege durch einfaches Wenden auf dem Steg fixierbar.

Hierbei rasten die Arretierungsnocken in den Rastprofilen der Stege ein **(Version B)**.

Trennstegsystem TSO ohne Höhenunterteilung

Vers.				a_{x Raster} [mm]	
Α	3	6	4	-	-
В	3	6	4	2	-

Bestellbeispiel

Bitte die Bezeichnung des Trennstegsystems (**TS0**), die Version, sowie die Anzahl der Trennstege pro Querschnitt $[n_{\overline{1}}]$ angeben. Sie können Ihrer Bestellung gerne eine Skizze beifügen.

Weitere Produktinformationen online

Montageanleitungen uvm.: Mehr Infos auf Ihrem Smartphone oder unter

tsubaki-kabelschlepp.com/ downloads

Konfigurieren Sie hier Ihre Energieführungskette: **online-engineer.de** ation Ene

Konstruktionsrichtlinien

> Materialinformationen

Serie MONO

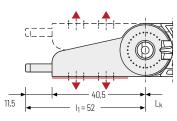
> serie luickTrax®

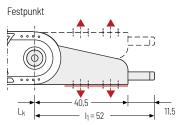
serie FasvTrax® Energieketten

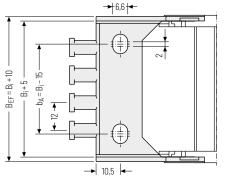
konfiguration

Konstruktions-richtlinien

informationen


Serie 10N0


UA1250 | Anschlusselemente


Einteilige Anschlusswinkel - Kunststoff (mit integrierter Zugentlastung)

Die Anschlusswinkel aus Kunststoff lassen sich von oben oder unten anschließen. Die Anschlussart kann durch Umstecken des Anschlusswinkels geändert werden.

Mitnehmer

▲ Montagemöglichkeiten

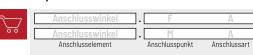
B i [mm]	B EF [mm]	n _z
30	40	2
50	60	4

Serie IKP35

Serie TKK

Anschlusspunkt

F - Festpunkt


M - Mitnehmer

Anschlussart

- A Verschraubung nach außen (Standard)
 - Verschraubung nach innen
 - H Verschraubung um 90° gedreht nach außen
 K Verschraubung um 90° gedreht nach innen

Bestellbeispiel

Festpunkt

Ketten-konfiguration

Konstruktions-richtlinien

Material-informationen

Serie MONO

Serie QuickTrax®

Serie UNIFLEX Advanced

Serie TKP35

Serie TKK

Serie EasyTrax®

Serie EasyTrax®

UA1320

Teilung 32 mm

Innenhöhe 20 mm

Innenbreiten 15 – 65 mm

Krümmungsradien 28 – 125 mm

Stegbauarten

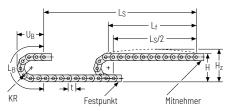
Bauart 020

Jaconner Dohman

Geschlossener Rahmen

- » Gewichtsoptimierter, geschlossener Kunststoffrahmen mit besonders hoher Torsionssteifigkeit.
- » Außen/Innen: Nicht zu öffnen.

QuickTrax® | EasyTrax®

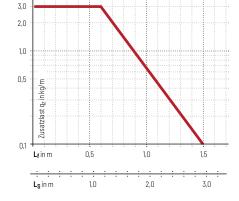

Für eine öffenbare Energieführung mit der Innenhöhe 18 – 20 mm empfehlen wir die Serien QuickTrax® 0320 oder EasyTrax® 0320 **QT0320 ab Seite 138** und **ET0320 ab Seite 252**.

Anderungen vorbehalten.

Konstruktions-richtlinien

UA1320 | Einbaumaße | Freitragend

Freitragende Anordnung


KR [mm]	H [mm]	H _z [mm]	L _B [mm]	U _B [mm]
28	81,5	98,5	152	73
38	101,5	118,5	184	83
48	121,5	138,5	215	93
75	175,5	192,5	300	120
100	225,5	242,5	379	145
125	275,5	292,5	457	170

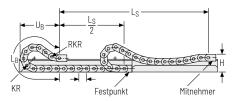
Belastungsdiagramm für freitragende Länge

in Abhängigkeit von der Zusatzlast.

Bei längeren Verfahrwegen ist ein Durchhang der Energieführung je nach Einsatzfall technisch zulässig.

Ketteneigengewicht $q_k = 0.40 \text{ kg/m}$ bei $B_i 50 \text{ mm}$. Bei abweichender Innenbreite verändert sich die maximale Zusatzlast.

Geschwindigkeit bis 10 m/s



Verfahrweg bis 2,9 m

Zusatzlast bis 3 ka/m

Gleitende Anordnung

Geschwindigkeit bis 2,5 m/s

Beschleunigung bis 25 m/s²

Die gleitende Energieführung muss in einem Kanal geführt werden. Siehe S. 866.

Zusatzlast bis 3 kg/m

Verfahrweg bis 80 m

Serie KP35

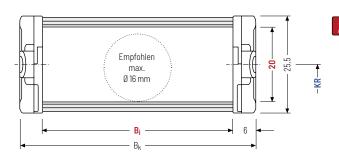
Serie TKK

Konstruktionsrichtlinien

UA1320.020 | Abmessungen · Technische Daten

Stegbauart 020 -

geschlossener Rahmen


- » Gewichtsoptimierter, geschlossener Kunststoffrahmen mit besonders hoher Torsionssteifigkeit.
- » Außen/Innen: Nicht zu öffnen.

Steganordnung an jedem Kettenglied **(VS: vollstegig)**

Der maximale Leitungsdurchmesser ist stark abhängig vom Krümmungsradius und dem gewünschten Leitungstyp. Bitte sprechen Sie uns an.

Berechnung der Kettenlänge

Kettenlänge L_k

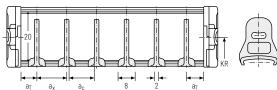
$$L_k \approx \frac{L_S}{2} + L_B$$

Kettenlänge L_k aufgerundet auf Teilung t

h _i h _G	B _i	B _k	B _k KR							
[mm] [mm]	[mm]	[mm]	[mm]	[kg/m]						
20 25,5 15	25 38 50 65	B _i + 12 28	38 48 75 100 125	0,36 - 0,48						

UA1320.020 | Innenaufteilung | TSO

Trennstegsysteme


Montiert wird das Trennstegsystem standardmäßig an jedem 2. Kettenglied.

Standardmäßig sind Trennstege bzw. das komplette Trennstegsystem (Trennstege mit Höhenseparierungen) im Querschnitt verschiebbar (**Version A**).

Trennstegsystem TSO ohne Höhenunterteilung

Die Trennstege sind im Querschnitt verschiebbar.

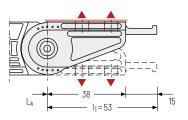
Bestellbeispiel

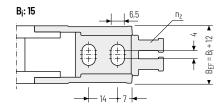
Bitte die Bezeichnung des Trennstegsystems **(TS0)**, die Version sowie die Anzahl der Trennstege pro Querschnitt $[n_{\overline{1}}]$ angeben. Sie können Ihrer Bestellung gerne eine Skizze beifügen.

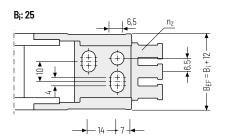
Energieketten

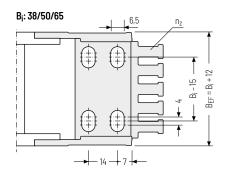
konfiguration

Konstruktions-richtlinien

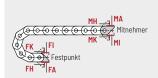

informationen


Serie 10N0


UA1320 | Anschlusselemente


Einteilige Anschlusswinkel - Kunststoff (mit integrierter Zugentlastung)

Die Anschlusswinkel aus Kunststoff lassen sich von oben oder unten anschließen. Die Anschlussart kann durch Umstecken des Anschlusswinkels geändert werden.



▲ Montagemöglichkeiten

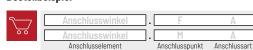
B i [mm]	B EF [mm]	n _z
15	27	2
25	37	3
38	50	4
50	62	5
65	77	6

Optional sind die Anschlusselemente auch ohne integrierte Zugentlastung erhältlich. Bitte bei der Bestellung angeben.

Anschlusspunkt

F - Festpunkt

M - Mitnehmer


Anschlussart

A - Verschraubung nach außen (Standard)

Verschraubung nach innen

H - Verschraubung um 90° gedreht nach außen
 K - Verschraubung um 90° gedreht nach innen

Bestellbeispiel

Serie TKK

Serie IKP35

Energieketten

Ketten-konfiguration

Konstruktions-richtlinien

Material-informationen

Serie MONO

Serie QuickTrax®

Serie UNIFLEX Advanced

Serie TKP35

Serie TKK

UA1455

Innenbreiten 25 - 130 mm

Krümmungsradien 52 - 200 mm

Stegbauarten

Bauart 020 Seite 164

Geschlossener Rahmen

- » Gewichtsoptimierter, geschlossener Kunststoffrahmen mit besonders hoher Torsionssteifigkeit.
- » Außen/Innen: Nicht zu öffnen.

Bauart 030 Seite 165

Rahmen mit außen lösbaren Stegen

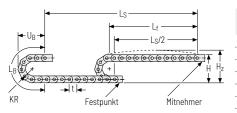
- » Gewichtsoptimierter Kunststoffrahmen mit besonders hoher Torsionssteifigkeit.
- » Außen: Aufklappbar und lösbar.

Bauart 040 Seite 166

Anderungen vorbehalten.

Rahmen mit innen lösbaren Stegen

- » Gewichtsoptimierter Kunststoffrahmen mit besonders hoher Torsionssteifigkeit.
- » Innen: Aufklappbar und lösbar.



EasyTrax®

Für eine öffenbare Energieführung mit der Innenhöhe 25 mm empfehlen wir die Serien EasyTrax® 1455

ET1455 ab Seite 258.

Freitragende Anordnung

KR	Н	H_z	L_{B}	U _B
[mm]	[mm]	[mm]	[mm]	[mm]
52	140	165	255	116
65	166	191	296	129
95	226	251	390	159
125	286	311	484	189
150	336	361	563	214
180	396	421	657	244
200	436	461	720	264

Belastungsdiagramm für freitragende Länge

in Abhängigkeit von der Zusatzlast.

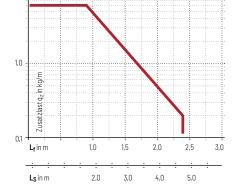
Bei längeren Verfahrwegen ist ein Durchhang der Energieführung je nach Einsatzfall technisch zulässig.

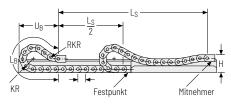
Ketteneigengewicht $q_k = 0.75 \text{ kg/m}$ bei B_i 38 mm. Bei abweichender Innenbreite verändert sich die maximale 7usatzlast.

Geschwindiakeit

bis 10 m/s

Verfahrweg


bis 4,8 m


Beschleuniauna his 50 m/s^2

Gleitende Anordnung | GO-Modul mit gleit-optimierten Kettengliedern

KR	Н	GO-Modul RKR	L_B	U_{B}
[mm]	[mm]	[mm]	[mm]	[mm]
52	108	225	780	377
65	108	225	825	389
95	108	225	1007	450
125	108	225	1189	508
150	108	225	1371	573
180	108	225	1599	655
200	108	225	1781	723

Geschwindigkeit bis 2,5 m/s

Verfahrweg

bis 120 m

Beschleunigung bis 20 m/s²

Zusatzlast bis 6 ka/m

Die gleitende Energieführung muss in einem Kanal geführt werden. Siehe S. 866. Das am Mitnehmer montierte GO-Modul ist eine definierte

Abfolge von 5 angepassten KR/RKR-Kettenlaschen. Für eine gleitende Anwendung ist die Verwendung

von Gleitschuhen erforderlich.

Für eine gleitende Anordnung sind ausschließlich die Bauarten 020 und 030 zu verwenden.

Konstruktionsrichtlinien

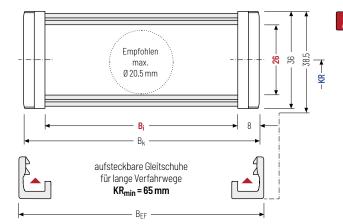
Serie EasyTrax®

UA1455.020 | Abmessungen · Technische Daten

Stegbauart 020 -

geschlossener Rahmen

- » Gewichtsoptimierter, geschlossener Kunststoffrahmen mit besonders hoher Torsionssteifigkeit.
- » Außen/Innen: Nicht zu öffnen.



Steganordnung an jedem Kettenglied **(VS: vollstegig)**

B_i von 25 – 130 mm

Der maximale Leitungsdurchmesser ist stark abhängig vom Krümmungsradius und dem gewünschten Leitungstyp. Bitte sprechen Sie uns an.

Berechnung der Kettenlänge

Kettenlänge L_k

$$L_k \approx \frac{L_S}{2} + L_B$$

 $\begin{tabular}{ll} Kettenlänge L_k aufgerundet \\ auf Teilung t \\ \end{tabular}$

Sonderausführung für Stützfüße von Nutzfahrzeugen

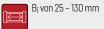
Sonderausführungen für das sichere Führen und Separieren von biegesteifen Hydraulikschläuchen und Elektroleitungen auf begrenztem Bauraum in ausfahrbaren Stützfüßen von Nutzfahrzeugen auf Anfrage.

h _i [mm]	h _G [mm]	h g' [mm]		B _i [mm]		B _k [mm]	B _{EF} [mm]		K [m	q k [kg/m]																		
O.C.	70	70 F	70 E	70 E	70 E	70 E	70 E	70 E	70 E	38 E	30 E	70 E	70 E	30 E	30 E	38 E	38,5	385	25	38	58	D . 10	B _i + 19	52	65	95	125	0,71 – 1,12
26	36	00,5	78	103	130	Dj + 10	Dj+19	150		200		U,/ I - I,IZ																

Konstruktions-richtlinien

Serie 10N0

UA1455.030 | Abmessungen · Technische Daten


Stegbauart 030 - mit außen aufklappbaren und lösbaren Stegen

- » Gewichtsoptimierter Kunststoffrahmen mit besonders hoher Torsionssteifigkeit.
- » An beliebiger Position nach Links oder Rechts aufklappbar und lösbar.
- » Außen: Aufklappbar und lösbar.

Steganordnung an jedem Kettenglied (VS: vollstegig)

[mm]

38

103

58

130

25

Der maximale Leitungsdurchmesser ist stark abhängig vom Krümmungsradius und dem gewünschten Leitungstyp. Bitte sprechen Sie uns an.

Berechnung der Kettenlänge

Kettenlänge L_k

$$L_k \approx \frac{L_S}{2} + L_B$$

[mm]

200

65

180

Kettenlänge L_k aufgerundet auf Teilung t

[kg/m]

0.73 - 1.10

125

Serie KP35

Serie TKK

Bestellbeispiel

[mm]

36

[mm]

38,5

[mm]

26

[mm]

B_i + 16

[mm]

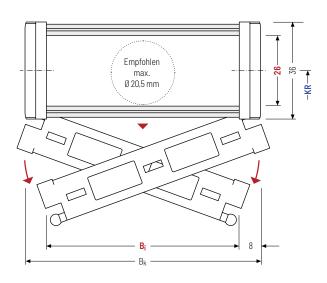
B_i + 19

52

150

UA1455.040 | Abmessungen · Technische Daten

Stegbauart 040 – mit innen aufklappbaren und lösbaren Stegen


- » Gewichtsoptimierter Kunststoffrahmen mit besonders hoher Torsionssteifigkeit.
- » An beliebiger Position nach Links oder Rechts aufklappbar und lösbar.
- » Innen: Aufklappbar und lösbar.

Steganordnung an jedem Kettenglied **(VS: vollstegig)**

- Der maximale Leitungsdurchmesser ist stark abhängig vom Krümmungsradius und dem gewünschten Leitungstyp. Bitte sprechen Sie uns an.
- Die Bauart 040 ist nicht für eine gleitende Anordnung geeignet.

Berechnung der Kettenlänge

Kettenlänge L_k

$$L_k \approx \frac{L_S}{2} + L_B$$

Kettenlänge L_k aufgerundet auf Teilung t

h _i [mm]	h _G [mm]		B _i [mm]		B_k [mm]		K [m	(R im]		q k [kg/m]
20	36	25	38	58	B _i + 16	52	65	95	125	0,73 – 1,10
26	. 00	78	103	130	Dj + 10	150	180	200		0,/3 - 1,10

Bestellbeispiel

Energieketten

ns- Kettenronfiguration

ıl- Konstruktionsonen richtlinien

Materialinformationen

Serie MONO

Serie uickTrax®

Serie UNIFLEX Advanced

> Serie TKP35

Serie TKK

Serie EasyTrax®

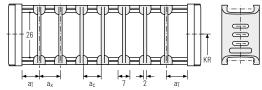
Trennstegsysteme

Montiert wird das Trennstegsystem standardmäßig an jedem 2. Kettenglied.

Standardmäßig sind Trennstege bzw. das komplette Trennstegsystem (Trennstege mit Höhenseparierungen) im Querschnitt verschiebbar (Version A).

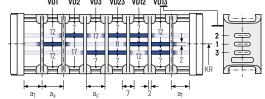
Für Anwendungen mit Querbeschleunigungen und auf der Seite liegende Anwendungen sind Trennstege mit Arretierungsnocken verfügbar.

Hierbei rasten die Arretierungsnocken in den Rastprofilen der Stege ein (Version B).


Trennstegsystem TSO ohne Höhenunterteilung

Vers.	a T min [mm]		a _{c min} [mm]	a_{x Raster} [mm]	n T min
Α	3,5	7	5	-	-
B*	4/5**	7,5	5,5	2,5	-

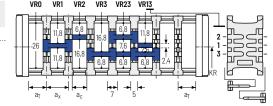
Trennsteganzahl bei Bauart 020 abhängig von Bi

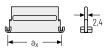

* nicht Bauart 020

Trennstegsystem TS1 mit durchgehender Höhenunterteilung*

Vers.					a_{x Raster} [mm]	
Α	3,5	20	7	5	-	2
В	4/5**	20	7,5	5,5	2,5	2

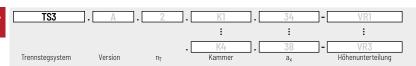
* nicht Bauart 020




Trennstegsystem TS3 mit Höhenunterteilung aus Kunststoff-Zwischenböden*

Vers.	a_{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	n _{T min}
Α	3,5	15	10	2

* nicht Bauart 020


Die Trennstege sind durch die Zwischenböden fixiert, das komplette Trennstegsystem ist im Ouerschnitt verschiebbar.

			-A (- -			
			a _c (Nutzl	breite Inn	enkamm	er) [mm]			
15	20	25	30	35	40	45	55	65	75
10	15	20	25	30	35	40	50	60	70

a. (Mittenahstand Trennstege) [mm]

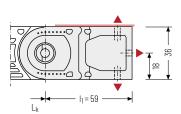
^{** 4} mm für B_i 38 – 103; 5 mm für B_i 25, 130

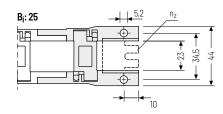
^{** 4} mm für B_i 38 - 103; 5 mm für B_i 25, 130

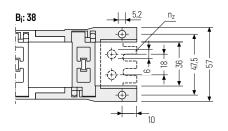
Energieketten

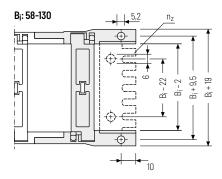
konfiguration

Konstruktions-richtlinien

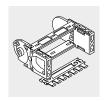

informationen


Serie 10N0


UA1455 | Anschlusselemente

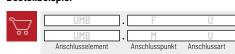

Universal-Anschlusselemente UMB - Kunststoff (Standard)

Die Universal-Anschlusselemente (UMB) aus Kunststoff lassen sich von oben, von unten oder stirnseitig anschließen.



Empfohlenes Anzugsmoment: 5 Nm für Schrauben M5 - 8.8

Optional sind die Anschlusselemente auch mit Zugentlastungskamm (1x pro Seite) erhältlich. Bitte bei der Bestellung angeben.

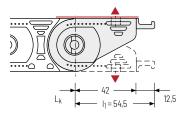

Anschlusspunkt F - Festpunkt

M - Mitnehmer

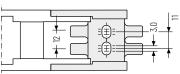
Anschlussart

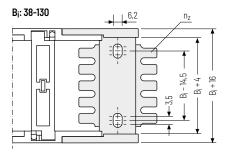
U - Universalanschluss

Bestellbeispiel

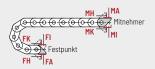


Serie TKK


Serie FKP35


Einteilige Anschlusswinkel kurz - Kunststoff

Die Anschlusswinkel aus Kunststoff lassen sich von oben oder unten anschließen. Die Anschlussart kann durch Umstecken des Anschlusswinkels geändert werden.


Empfohlenes Anzugsmoment: 6 Nm für Schrauben M6 - 8.8

B i [mm]	n _z
25	2x 2
38	2x 3
58	2x 4
78	2x 6
103	2x 8
130	2 x 10

▲ Montagemöglichkeiten

Optional sind die Anschlusswinkel auch ohne Zugentlastungskamm (außer Bi 25) erhältlich. Bitte bei der Bestellung angeben.

Anschlusspunkt

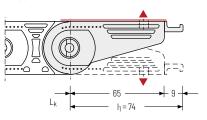
F - Festpunkt

M - Mitnehmer

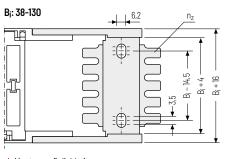
Anschlussart

A - Verschraubung nach außen (Standard)

I - Verschraubung nach innen

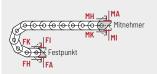

H - Verschraubung um 90° gedreht nach außen

K - Verschraubung um 90° gedreht nach innen



Einteilige Anschlusswinkel lang - Kunststoff

Die Anschlusswinkel aus Kunststoff lassen sich von oben oder unten anschließen und ermöglichen im Anschlussbereich einen 1:1 Austausch der UNIFLEX 0455. Die Anschlussart kann durch Umstecken des Anschlusswinkels geändert werden.


▲ Montagemöglichkeiten

Empfohlenes Anzugsmoment: 6 Nm für Schrauben M6 - 8.8 und Unterlegscheiben

B_i [mm]	n _z
25	2x 2
38	2x 3
58	2x 4
78	2x 6
103	2x 8
130	2 x 10

Optional sind die Anschlusswinkel auch ohne Zugentlastungskamm (außer B_i 25) erhältlich. Bitte bei der Bestellung angeben.

Anschlusspunkt

F - Festpunkt

M - Mitnehmer

Anschlussart

A - Verschraubung nach außen (Standard)

Verschraubung nach innen

H - Verschraubung um 90° gedreht nach außen

K - Verschraubung um 90° gedreht nach innen

Serie TKK

Serie EasyTrax®

UA1555

Innenbreiten 50 - 150 mm

Stegbauarten

Geschlossener Rahmen

- » Gewichtsoptimierter, geschlossener Kunststoffrahmen mit besonders hoher Torsionssteifigkeit.
- » Außen/Innen: Nicht zu öffnen.

Bauart 030 Seite **175**

Rahmen mit außen lösbaren Stegen

- » Gewichtsoptimierter Kunststoffrahmen mit besonders hoher Torsionssteifigkeit.
- » Außen: Aufklappbar und lösbar.

Bauart 040 Seite 176

Rahmen mit innen lösbaren Stegen

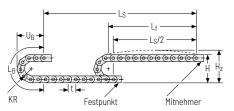
- » Gewichtsoptimierter Kunststoffrahmen mit besonders hoher Torsionssteifigkeit.
- » Innen: Aufklappbar und lösbar.

Weitere Produktinformationen online

Montageanleitungen uvm.: Mehr Infos auf Ihrem Smartphone oder

tsubaki-kabelschlepp.com/ downloads

Konfigurieren Sie hier Ihre Energieführungskette:

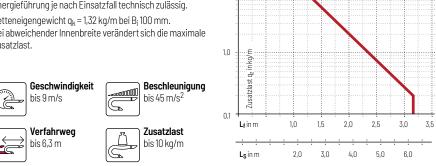

online-engineer.de

Konstruktions-richtlinien

Serie 10N0

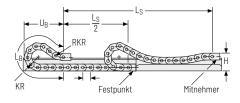
UA1555 | Einbaumaße | Freitragend · Gleitend

Freitragende Anordnung


KR	. Н	Hz	L _B	UB
[mm]	[mm]	[mm]	[mm]	[mm]
63	176	216	309	145
80	210	240	362	165
100	250	280	425	185
125	300	330	504	210
160	370	400	614	245
200	450	480	740	285

Belastungsdiagramm für freitragende Länge

in Abhängigkeit von der Zusatzlast.


Bei längeren Verfahrwegen ist ein Durchhang der Energieführung je nach Einsatzfall technisch zulässig.

Ketteneigengewicht $q_k = 1,32 \text{ kg/m}$ bei B_i 100 mm. Bei abweichender Innenbreite verändert sich die maximale Zusatzlast.

10,0

Gleitende Anordnung | GO-Modul mit gleit-optimierten Kettengliedern

Н	GO-Modul RKR	L_{B}	U_{B}
[mm]	[mm]	[mm]	[mm]
150	250	939	458
150	250	994	473
150	250	1105	510
150	250	1272	567
150	250	1438	612
150	250	1771	730
	[mm] 150 150 150 150	[mm] [mm] 150 250 150 250 150 250 150 250 150 250 150 250	[mm] [mm] [mm] 150 250 939 150 250 994 150 250 1105 150 250 1272 150 250 1438

Geschwindigkeit bis 3 m/s

Beschleunigung bis 20 m/s²

Verfahrweg bis 125 m

Zusatzlast bis 10 kg/m

Die gleitende Energieführung muss in einem Kanal aeführt werden. Siehe S. 866.

Das am Mitnehmer montierte GO-Modul ist eine definierte Abfolge von 5 angepassten KR/RKR-Kettenlaschen.

Für eine gleitende Anwendung ist die Verwendung von Gleitschuhen erforderlich.

Für eine gleitende Anordnung sind ausschließlich die Bauarten 020 und 030 zu verwenden.

Serie KP35

Serie TKK

konfiguration

Konstruktions-richtlinien

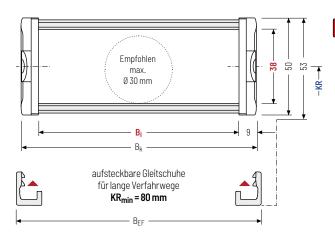
nformationen

Serie 10N0

UA1555.020 | Abmessungen · Technische Daten

Stegbauart 020 -

geschlossener Rahmen


- » Gewichtsoptimierter, geschlossener Kunststoffrahmen mit besonders hoher Torsionssteifigkeit.
- » Außen/Innen: Nicht zu öffnen.

Steganordnung an jedem Kettenglied (VS: vollstegig)

Der maximale Leitungsdurchmesser ist stark abhängig vom Krümmungsradius und dem gewünschten Leitungstyp. Bitte sprechen Sie uns an.

Berechnung der Kettenlänge

Kettenlänge Lk

$$L_k \approx \frac{L_S}{2} + L_B$$

Kettenlänge Lk aufgerundet auf Teilung t

Serie QuickTrax®

Serie KP35

Serie TKK

hi

[mm]

38

hg

[mm]

50

hg

[mm]

53

Bi

[mm]

75

150

100

50

125

 B_k

[mm]

 $B_i + 18$

BEF

[mm]

 $B_{i} + 22$

63

160

KR

[mm]

80

200

100

125

VS
 Steganordnung

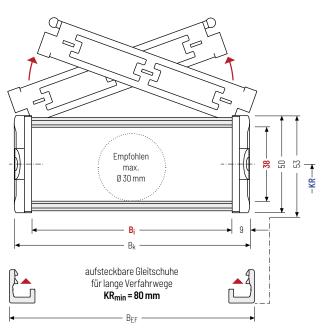
qk

[kg/m]

1,13 - 1,52

UA1555.030 | Abmessungen · Technische Daten

Stegbauart 030 - mit außen aufklappbaren und lösbaren Stegen


- » Gewichtsoptimierter Kunststoffrahmen mit besonders hoher Torsionssteifigkeit.
- » An beliebiger Position nach Links oder Rechts aufklappbar und lösbar.
- » Außen: Aufklappbar und lösbar.

Steganordnung an jedem Kettenglied (VS: vollstegig)

Der maximale Leitungsdurchmesser ist stark abhängig vom Krümmungsradius und dem gewünschten Leitungstyp.

Bitte sprechen Sie uns an.

Berechnung der Kettenlänge

Kettenlänge L_k

$$L_k \approx \frac{L_S}{2} + L_B$$

Kettenlänge Lk aufgerundet auf Teilung t

h _i [mm]	h _G [mm]	h gʻ [mm]		B _i [mm]		B _k [mm]	B _{EF} [mm]		KR [mm]			q k [kg/m]
70	50	53	50	75	100	B _i + 18	B _i + 22	63	80	100	125	1,13 – 1,51
38 50	: 50	10E			Bj + 10	Dj + ZZ	100	200			1,10 – 1,01	

Bestellbeispiel

Änderungen vorbehalten.

Konstruktions-richtlinien

Serie MONO

Serie KP35

Serie TKK

Energieketten

Kettenkonfiguration

Konstruktionsrichtlinien

Materialinformationen

Serie MONO

Serie uickTrax®

Serie UNIFLEX Advanced

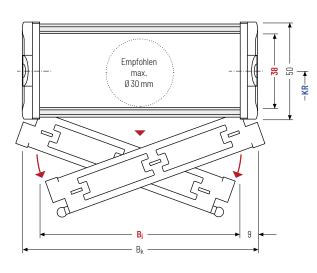
Serie TKP35

Serie TKK

> Serie EasyTrax®

UA1555.040 | Abmessungen · Technische Daten

Stegbauart 040 - mit innen aufklappbaren und lösbaren Stegen


- » Gewichtsoptimierter Kunststoffrahmen mit besonders hoher Torsionssteifigkeit.
- » An beliebiger Position nach Links oder Rechts aufklappbar und lösbar.
- » Innen: Aufklappbar und lösbar.

Steganordnung an jedem Kettenglied **(VS: vollstegig)**

- Der maximale Leitungsdurchmesser ist stark abhängig vom Krümmungsradius und dem gewünschten Leitungstyp. Bitte sprechen Sie uns an.
- Die Bauart 040 ist nicht für eine gleitende Anordnung geeignet.

Berechnung der Kettenlänge

Kettenlänge L_k

$$L_k \approx \frac{L_S}{2} + L_B$$

Kettenlänge L_k aufgerundet auf Teilung t

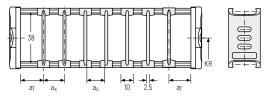
h _i [mm]	h _G [mm]	h g' [mm]		B _i [mm]		B _k [mm]		K [m	R m]		q k [kg/m]
70	50	5 7	50	75	100	B _i + 18	63	80	100	125	1,13 - 1,52
38	ÜÜ	ეე	125	150		Dj + 10	160	200			1,10 - 1,02

Trennstegsysteme

Montiert wird das Trennstegsystem standardmäßig an jedem 2. Kettenglied.

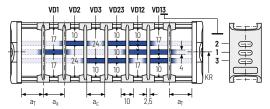
Standardmäßig sind Trennstege bzw. das komplette Trennstegsystem (Trennstege mit Höhenseparierungen) im Querschnitt verschiebbar (Version A).

Für Anwendungen mit Querbeschleunigungen und auf der Seite liegende Anwendungen sind Trennstege mit Arretierungsnocken verfügbar.


Hierbei rasten die Arretierungsnocken in den Rastprofilen der Steae ein (Version B).

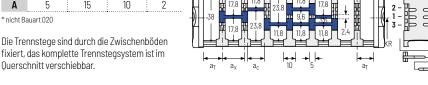
Trennstegsystem TSO ohne Höhenunterteilung

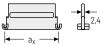
Vers.	a T min [mm]	a _{x min} [mm]	a _{c min} [mm]	a_{x Raster} [mm]	n T min
Α	5	10	7,5	-	-
B*	5	10	7,5	2,5	-


Trennsteganzahl bei Bauart 020 abhängig von Bi

Trennstegsystem TS1 mit durchgehender Höhenunterteilung*

Vers.					a _{x Raster} [mm]	
Α	5	20	10	7,5	-	2
В	5	20,5	10	7,5	2,5	2





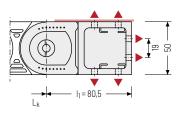
Trennstegsystem TS3 mit Höhenunterteilung aus Kunststoff-Zwischenböden*

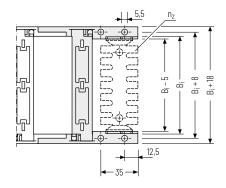
Ve	ers.	a_{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	n _{T min}
	Α	5	15	10	2


Die Trennstege sind durch die Zwischenböden fixiert, das komplette Trennstegsystem ist im Ouerschnitt verschiebbar.

lmm] Iron							
a _c (Nutzbreite Innenkammer) [mm]							
		OF.	75				
45	55	65	/5				
40	50	60	70				
	45	45 55	45 55 65 40 50 60				

a. (Mittenahstand Trennstege) [mm]




^{*} nicht Bauart 020

Serie EasyTrax®

Universal-Anschlusselemente UMB - Kunststoff (Standard)

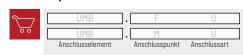
Die Universal-Anschlusselemente (UMB) aus Kunststoff lassen sich von oben, von unten oder stirnseitig anschließen.

▲ Montagemöglichkeiten

Empfohlenes Anzugsmoment: 5 Nm für Schrauben M5 - 8.8

B_i [mm]	n _z
50	2x 3
75	2x 5
90	2x 6
100	2x 7
125	2x 9
150	2 x 11

Optional sind die Anschlusselemente auch **mit** Zugentlastungskamm oder **mit** C-Schiene Art.-Nr. 3931 (1x pro Seite) für Bügelschellen erhältlich. Bitte bei der Bestellung angeben.

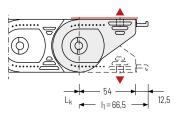

Anschlusspunkt F - Festpunkt

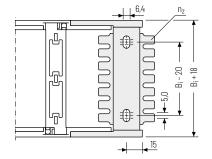
M - Mitnehmer

Anschlussart

U - Universalanschluss

Bestellbeispiel

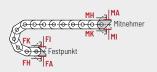

Wir empfehlen die Verwendung von Zugentlastungen am Mitnehmer und Festpunkt. Siehe ab S. 926.


Änderungen vorbehalten.

UA1555 | Anschlusselemente

Einteilige Anschlusswinkel kurz - Kunststoff

Die Anschlusswinkel aus Kunststoff lassen sich **von oben oder unten anschließen**. Die Anschlussart kann durch Umstecken des Anschlusswinkels geändert werden.


▲ Montagemöglichkeiten

Empfohlenes Anzugsmoment: 6 Nm für Schrauben M6 – 8.8

B_i [mm]	n _z
50	2x 4
75	2x 6
100	2x 8
125	2 x 10
150	2 x 12

Optional sind die Anschlusswinkel auch **ohne** Zugentlastungskamm erhältlich. Bitte bei der Bestellung angeben.

Anschlusspunkt

F - Festpunkt

M - Mitnehmer

Anschlussart


A - Verschraubung nach außen (Standard)

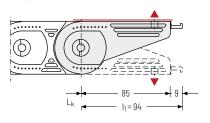
I - Verschraubung nach innen

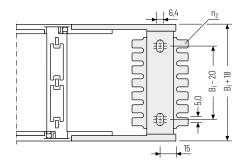
H - Verschraubung um 90° gedreht nach außen

K - Verschraubung um 90° gedreht nach innen

Bestellbeispiel

Serie EasyTrax® Konstruktions-richtlinien


nformationen


Serie 10N0

UA1555 | Anschlusselemente

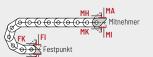
Einteilige Anschlusswinkel lang - Kunststoff

Die Anschlusswinkel aus Kunststoff lassen sich von oben oder unten anschließen und ermöglichen im Anschlussbereich einen 1:1 Austausch der UNIFLEX 0555. Die Anschlussart kann durch Umstecken des Anschlusswinkels geändert werden.

▲ Montagemöglichkeiten

Empfohlenes Anzugsmoment: 6 Nm für Schrauben M6 - 8.8 und Unterlegscheiben

B_i [mm]	n _z
50	2x 4
75	2x 6
100	2x 8
125	2 x 10
150	2 x 12



Optional sind die Anschlusswinkel auch ohne Zugentlastungskamm erhältlich. Bitte bei der Bestellung angeben.

Serie IKP35

Serie TKK

Anschlusspunkt

F - Festpunkt

M - Mitnehmer

Anschlussart

- A Verschraubung nach außen (Standard)
 - Verschraubung nach innen

 - H Verschraubung um 90° gedreht nach außen
 K Verschraubung um 90° gedreht nach innen

Bestellbeispiel

Serie TKK

UA1665

Teiluna 66,5 mm

Innenhöhe 44 mm

Innenbreiten 50 - 250 mm

Krümmungsradien 75 - 300 mm

Stegbauarten

Bauart 020 Seite 184

Geschlossener Rahmen

- » Gewichtsoptimierter, geschlossener Kunststoffrahmen mit besonders hoher Torsionssteifigkeit.
- » Außen/Innen: Nicht zu öffnen.

Bauart 030 Seite 185

Rahmen mit außen lösbaren Stegen

- » Gewichtsoptimierter Kunststoffrahmen mit besonders hoher Torsionssteifigkeit.
- » Außen: Aufklappbar und lösbar.

Bauart 040...... Seite 186

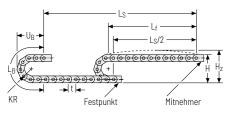
Rahmen mit innen lösbaren Stegen

- » Gewichtsoptimierter Kunststoffrahmen mit besonders hoher Torsionssteifigkeit.
- » Innen: Aufklappbar und lösbar.

Bauart RMAI Seite 188

Rahmen-Aufbausteg

- » Gewichtsoptimierter Kunststoffrahmen mit besonders hoher Torsionssteifigkeit.
- » Innen: Verschraubung einfach zu lösen.


Bauart RMAO Seite 190

Rahmen-Aufbausteg

- » Gewichtsoptimierter Kunststoffrahmen mit besonders hoher Torsionssteifiakeit.
- » Außen: Verschraubung einfach zu lösen.

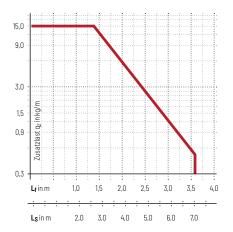
Serie FacvTrav®

Freitragende Anordnung

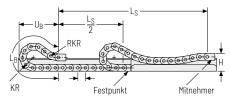
KR [mm]	H [mm]	H _z [mm]	L _B	U _B
75	210	245	369	172
/5	ZIU	245	১০৪	1/2
100	260	295	448	197
120	300	335	511	217
140	340	375	574	237
200	460	495	762	297
250	560	595	919	347
300	660	695	1076	397

Belastungsdiagramm für freitragende Länge

in Abhängigkeit von der Zusatzlast.


Bei längeren Verfahrwegen ist ein Durchhang der Energieführung je nach Einsatzfall technisch zulässig.

Ketteneigengewicht q_k = 2,43 kg/m bei B₁ 200 mm. Bei abweichender Innenbreite verändert sich die maximale Zusatzlast.



bis 7 m

Gleitende Anordnung | GO-Modul mit gleit-optimierten Kettengliedern

KR [mm]	H [mm]	GO-Modul RKR [mm]	L _B [mm]	U _B [mm]
75	180	300	1118	546
100	180	300	1251	593
120	180	300	1318	609
140	180	300	1450	654
200	180	300	1783	753
250	180	300	2182	864
300	180	300	2581	1035

Geschwindigkeit bis 3 m/s

Verfahrweg bis 150 m

Zusatzlast bis 15 kg/m Die gleitende Energieführung muss in einem Kanal geführt werden. Siehe S. 866.

Das am Mitnehmer montierte GO-Modul ist eine definierte Abfolge von 5 angepassten KR/RKR-Kettenlaschen.

Für eine gleitende Anwendung ist die Verwendung von Gleitschuhen erforderlich.

Für eine gleitende Anordnung sind ausschließlich die Bauarten 020 und 030 zu verwenden.

Ketten-konfiguration

Konstruktions-richtlinien

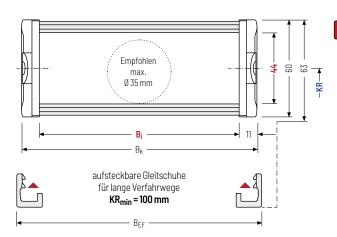
Material-informationen

Serie 10N0

UA1665.020 | Abmessungen · Technische Daten

Stegbauart 020 -

geschlossener Rahmen


- » Gewichtsoptimierter, geschlossener Kunststoffrahmen mit besonders hoher Torsionssteifigkeit.
- » Außen/Innen: Nicht zu öffnen.

Steganordnung an jedem Kettenglied (VS: vollstegig)

Der maximale Leitungsdurchmesser ist stark abhängig vom Krümmungsradius und dem gewünschten Leitungstyp. Bitte sprechen Sie uns an.

Berechnung der Kettenlänge

Kettenlänge Lk

$$L_k \approx \frac{L_S}{2} + L_B$$

Kettenlänge Lk aufgerundet auf Teilung t

æ	屳	Ģ
Ē	ᇎ	5
ၓ	₹	<u> </u>
	$\overline{}$	ă

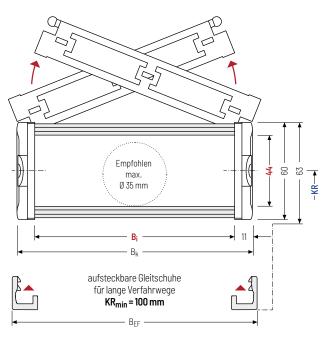
Serie	KP35
$\mathcal{O}_{\mathcal{O}}$	=

h _i [mm]	h _G [mm]	h _{G'} [mm]	B_i [mm]					B _k [mm]	B _{EF} [mm]	KR [mm]				q_k [kg/m]
1.1.	en.	63	67	50	75	75 100 125 150	150	D. 1 22	B _i + 27	75	100	120	140	1,67 – 2,76
44	υU		175	200	225	250		Di+ZZ Di+Z/		200	250	300		1,07 - 2,70

Bestellbeispiel

UA1665.030 | Abmessungen · Technische Daten

Stegbauart 030 – mit außen aufklappbaren und lösbaren Stegen


- » Gewichtsoptimierter Kunststoffrahmen mit besonders hoher Torsionssteifigkeit.
- » An beliebiger Position nach Links oder Rechts aufklappbar und lösbar.
- » Außen: Aufklappbar und lösbar.

Steganordnung an jedem Kettenglied (VS: vollstegig)

Der maximale Leitungsdurchmesser ist stark abhängig vom Krümmungsradius und dem gewünschten Leitungstyp. Bitte sprechen Sie uns an.

Berechnung der Kettenlänge

Kettenlänge L_k

$$L_k \approx \frac{L_S}{2} + L_B$$

Kettenlänge L_k aufgerundet auf Teilung t

h _i [mm]	h _G [mm]	h _{G'} [mm]			B _i [mm]			B _k [mm]	B _{EF} [mm]	KR [mm]			q_k [kg/m]	
44	60	63	50	75	100	125	150	D. ± 22	D. ± 27	75	100	120	140	167 270
	00		175	200	225	250		DI T ZZ	Dj+Z/	200	250	300		1,07 - 2,70

Bestellbeispiel

h Ellei d

konfigu

Konstruktionsrichtlinien

> riateriaiinformatione

Serie MONO

> sene juickTrax®

serie EasyTrax[®]

Energieketten

Kettenkonfiguration

Konstruktionsrichtlinien

Materialinformationen

Serie MONO

Serie uickTrax®

Serie UNIFLEX Advanced

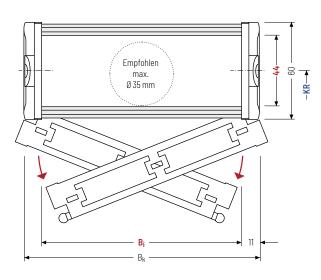
Serie TKP35

Serie TKK

Serie EasyTrax®

UA1665.040 | Abmessungen · Technische Daten

Stegbauart 040 – mit innen aufklappbaren und lösbaren Stegen

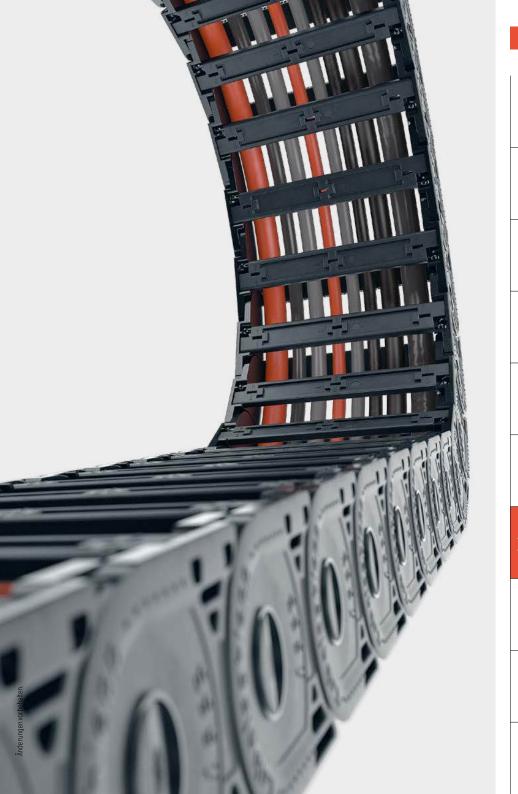

- » Gewichtsoptimierter Kunststoffrahmen mit besonders hoher Torsionssteifigkeit.
- » An beliebiger Position nach Links oder Rechts aufklappbar und lösbar.
- » Innen: Aufklappbar und lösbar.

Steganordnung an jedem Kettenglied **(VS: vollstegig)**

- Der maximale Leitungsdurchmesser ist stark abhängig vom Krümmungsradius und dem gewünschten Leitungstyp. Bitte sprechen Sie uns an.
- Die Bauart 040 ist nicht für eine gleitende Anordnung geeignet.

Berechnung der Kettenlänge

Kettenlänge L_k


$$L_k \approx \frac{L_S}{2} + L_B$$

Kettenlänge L_k aufgerundet auf Teilung t

h _i [mm]	h _G [mm]	B _i [mm]					B _k [mm]	KR [mm]				q_k [kg/m]
1.1.	60	50	75	100	125	150	B _i + 22	75	100	120	140	1,67 - 2,70
44	UU	175	200	225	250		D∣≠ZZ	200	250	300		1,07 - 2,70

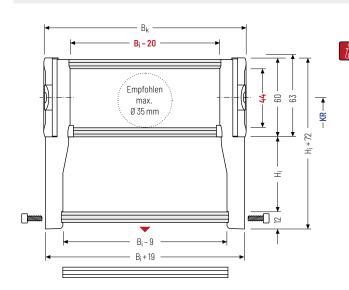
Bestellbeispiel

\sim	UA1665	. 040 .	125	. 140	- 2660	VS
00	Typenreihe	Stegbauart	B _i [mm]	KR [mm]	L _k [mm]	Steganordnung

UA1665.RMAI | Abmessungen · Technische Daten

Stegbauart RMAI -

Rahmen-Aufbausteg


- » Gewichtsoptimierter Kunststoffrahmen mit besonders hoher Torsionssteifigkeit.
- » Kunststoff-Stege und Aluminium-Profilstäbe mit Kunststoff-Aufbaustegen zur Führung sehr großer Leitungsdurchmesser.
- » Innen: Verschraubung einfach zu lösen.

Steganordnung an jedem Kettenglied **(VS: vollstegig)**

Der maximale Leitungsdurchmesser ist stark abhängig vom Krümmungsradius und dem gewünschten Leitungstyp. Bitte sprechen Sie uns an.

Berechnung der Kettenlänge

Kettenlänge Lk

$$L_k \approx \frac{L_S}{2} + L_B$$

Kettenlänge L_k aufgerundet auf Teilung t

hi	h _G		Hi		3 _i _	B _k B _{EF}		KR				q _k *	
[mm]	[mm]	[m		[mm]		[mm]	[mm]	[mm]				[kg/m]	
44	60	114	139	125	150	B _i + 22	D. ± 27	75	100	120	140	3,10 – 3,95	
44	ΟU	164	189	175	200	R! + 27	Bj + Z/	200	250	300		3,10 - 3,95	

* Angabe nach Standardteilung

Bestellbeispiel

Energiekett

ns- Kettenkonfiguration

Konstruktionsrichtlinien

Materialinformationen

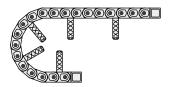
Serie MONO

Serie uickTrax®

Serie UNIFLEX Advanced

Serie TKP35

Serie TKK


UA1665.RMAI | Abmessungen · Technische Daten

RMAI - Montage nach innen:

Standard Teilung, Aufbausteg an jedem 4. Steg,

Unter Verwendung der Montageversion RMAI ist keine gleitende Anwendung möglich.

Mindest-KR beachten: $H_i = 114 \text{ mm}: KR_{min} = 200 \text{ mm}$ $H_i = 139 \text{ mm}$: $KR_{min} = 250 \text{ mm}$ $H_i = 164 \text{ mm}$: $KR_{min} = 300 \text{ mm}$ $H_i = 189 \text{ mm}$: $KR_{min} = 300 \text{ mm}$

Querschnitt Rahmen-Aufbausteg

Um einen nahezu quadratischen Querschnitt im Rahmen-Aufbausteg zu erreichen, empfehlen wir folgende Kombination von B_i zu H_i:

B _i [mm]	H _i [mm]	KR _{min} [mm]	Verschlussbügel [mm]
125	114	200	100
150	139	250	125
175	164	300	150
200	189	300	175

TOTALTRAX® Komplettsysteme

Profitieren Sie von den Vorteilen eines TOTALTRAX®-Komplettsystems. Eine Komplettlieferung aus einer Hand - auf Wunsch mit Gewährleistungszertifikat! Erfahren Sie mehr unter tsubaki-kabelschlepp.com/totaltrax

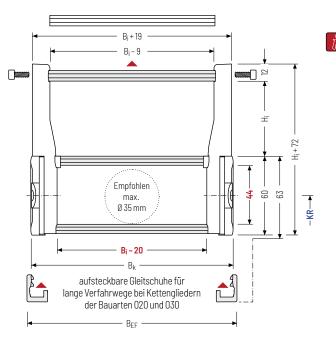
TRAXLINE® Leitungen für Energieführungen

Hochflexible Elektroleitungen, die speziell für den Einsatz in Energieführungsketten entwickelt, optimiert und getestet wurden, finden Sie unter tsubaki-kabelschlepp.com/traxline

UA1665.RMAO | Abmessungen · Technische Daten

Stegbauart RMAO -

Rahmen-Aufbausteg


- » Gewichtsoptimierter Kunststoffrahmen mit besonders hoher Torsionssteifigkeit.
- » Kunststoff-Stege und Aluminium-Profilstäbe mit Kunststoff-Aufbaustegen zur Führung sehr großer Leitungsdurchmesser.
- » Außen: Verschraubung einfach zu lösen.

Steganordnung an jedem Kettenglied **(VS: vollstegig)**

Der maximale Leitungsdurchmesser ist stark abhängig vom Krümmungsradius und dem gewünschten Leitungstyp. Bitte sprechen Sie uns an.

Berechnung der Kettenlänge

Kettenlänge L_k

$$L_k \approx \frac{L_S}{2} + L_B$$

 $\label{eq:KettenlängeLkaufgerundet} \text{ auf Teilung t}$

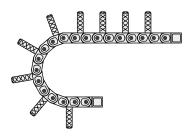
h _i [mm]	h _G [mm]	H [m	l_i m]	[m	B _i m]	B _k [mm]	B _{EF} [mm]	KR [mm]			q k* [kg/m]			
44	60	114	139	125	150	B _i + 22	50	150 B _i + 22 B _i + 27	B _i + 27	75	100	120	140	3,58 - 4,66
	. 00	164	189	175	200		Bi+27 Bi+21	200	250	300		3,56 - 4,00		

* Angabe nach Standardteilung

Bestellbeispiel

	UA1665 .	RMAO .	150	. 140 -	2660	VS
00	Typenreihe	Stegbauart	B _i [mm]	KR [mm]	L _k [mm]	Steganordnung

UA1665.RMAO | Abmessungen · Technische Daten


RMAO - Montage nach außen:

Standard Teilung, Aufbausteg an jedem 2. Steg, verschraubt.

Die Energieführung legt sich auf den Stegen ab. Für den Festbunkt ist eine Konsole vorzusehen.

Zur Unterstützung ist die Führung in einem **Kanal erforderlich**. Für den passenden Führungskanal wenden Sie sich bitte an unseren technischen Support unter technik@kabelschlepp.de.

Bitte beachten Sie die Ablauf- und Einbauhöhe.

Querschnitt Rahmen-Aufbausteg

Um einen nahezu quadratischen Querschnitt im Rahmen-Aufbausteg zu erreichen, empfehlen wir folgende Kombination von B; zu H;:

B _i [mm]	H _i [mm]	KR _{min} [mm]	Verschlussbügel [mm]
125	114	200	100
150	139	250	125
175	164	300	150
200	189	300	175

TOTALTRAX® Komplettsysteme

Profitieren Sie von den Vorteilen eines TOTALTRAX®-Komplettsystems. Eine Komplettlieferung aus einer Hand – auf Wunsch mit Gewährleistungszertifikat! Erfahren Sie mehr unter **tsubaki-kabelschlepp.com/totaltrax**

TRAXLINE® Leitungen für Energieführungen

Hochflexible Elektroleitungen, die speziell für den Einsatz in Energieführungsketten entwickelt, optimiert und getestet wurden, finden Sie unter **tsubaki-kabelschlepp.com/traxline**

Serie FasvTrax® Änderungen vorbehalten.

Energieketten

Konstruktions- Kettenrichtlinien konfiguration

Materialinformationen

> Serie MONO

Serie QuickTrax®

Serie UNIFLEX Advanced

> Serie TKP35

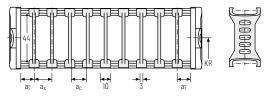
Serie TKK

Trennstegsysteme

Montiert wird das Trennstegsystem standardmäßig an jedem 2. Kettenglied.

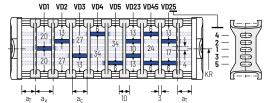
Standardmäßig sind Trennstege bzw. das komplette Trennstegsystem (Trennstege mit Höhenseparierungen) im Querschnitt verschiebbar (Version A).

Für Anwendungen mit Querbeschleunigungen und auf der Seite liegende Anwendungen sind Trennstege mit Arretierungsnocken verfügbar.


Hierbei rasten die Arretierungsnocken in den Rastprofilen der Stege ein (Version B).

Trennstegsystem TSO ohne Höhenunterteilung

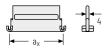
Vers.	a T min [mm]		a _{c min} [mm]	a_{x Raster} [mm]	n _T min
Α	5	10	7	-	-
B*	5	10	7	2,5	-


Trennsteganzahl bei Bauart 020 abhängig von Bi

Trennstegsystem TS1 mit durchgehender Höhenunterteilung*

Vers.					a_{x Raster} [mm]	
Α	5	20	10	7	-	2
В	5	20	10	7	2,5	2

* nicht Bauart 020



Trennstegsystem TS3 mit Höhenunterteilung aus Kunststoff-Zwischenböden*

Vers.	a_{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	n _{T min}
Α	4	16/40**	8	2

* nicht Bauart 020

Die Trennstege sind durch die Zwischenböden fixiert, das komplette Trennstegsystem ist im Ouerschnitt verschiebbar.

Fs sind auch 7wischenböden aus Aluminium im 1mm Breitenraster mit av>42 mm lieferbar.

VRO VR1 VR2 VR3 VR4 VR5 VR <u>23</u>
13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

	**										
	a _c (Nutzbreite Innenkammer) [mm]										
16	18	23	28	32	33	38	43	48	58	64	68
8	10	15	20	24	25	30	35	40	50	56	60
78	80	88	96	112	128	144	160	176	192	208	
70	72	80	88	104	120	136	152	168	184	200	

av (Mittenabstand Trennstege) [mm]

Beim Einsatz von **Zwischenböden mit a_x > 112 mm** empfehlen wir eine zusätzliche mittige Abstützung mit einem **Twintrennsteg**. Bei Verwendung von Twinntrennstegen sind die Höhenunterteilungen VD4 und VD5 nicht möglich.

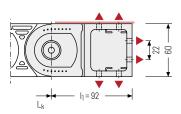
^{*} nicht Bauart 020

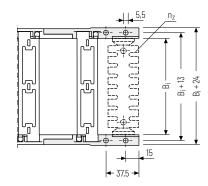
^{*} bei Zwischenböden aus Aluminium

Energieketten

konfiguration

Konstruktions-richtlinien


informationen


Serie 10N0

UA1665 | Anschlusselemente

Universal-Anschlusselemente UMB - Kunststoff (Standard)

Die Universal-Anschlusselemente (UMB) aus Kunststoff lassen sich von oben, von unten oder stirnseitig anschließen.

▲ Montagemöglichkeiten

Empfohlenes Anzugsmoment: 5 Nm für Schrauben M5 - 8.8

B_i [mm]	n _z
50	2x 3
75	2x 5
100	2x 7
125	2x 9
150	2 x 11
175	2 x 13

I MU

0 (0 (0 (0 (0 - Mitnehmer

Anschlusspunkt

F - Festpunkt

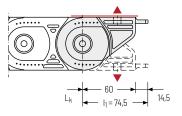
M - Mitnehmer

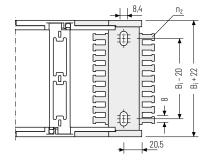
Anschlussart

U - Universalanschluss

Optional sind die Anschlusselemente auch mit Zugentlastungskamm oder mit C-Schiene Art.-Nr. 3931 (1x pro Seite) für Bügelschellen erhältlich. Bitte bei der Bestellung angeben.

Festpunkt FU

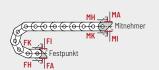



Wir empfehlen die Verwendung von Zugentlastungen am Mitnehmer und Festpunkt. Siehe ab S. 926.

UA1665 | Anschlusselemente

Einteilige Anschlusswinkel - Kunststoff

Die Anschlusswinkel aus Kunststoff lassen sich von **oben oder unten anschließen**. Die Anschlussart kann durch Umstecken des Anschlusswinkels geändert werden.


▲ Montagemöglichkeiten

Empfohlenes Anzugsmoment: 15 Nm für Schrauben M8 - 8.8

B i [mm]	n _z
50	2x 4
75	2x 6
100	2x 8
125	2 x 10
150	2 x 12
175	2 x 14
200	2 x 16
225	2 x 18
250	2 x 20

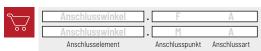
Optional sind die Anschlusswinkel auch **ohne** Zugentlastungskamm erhältlich. Bitte bei der Bestellung angeben.

Anschlusspunkt

F - Festpunkt

M - Mitnehmer

Anschlussart


A - Verschraubung nach außen (Standard)

I - Verschraubung nach innen

H - Verschraubung um 90° gedreht nach außen

K - Verschraubung um 90° gedreht nach innen

Bestellbeispiel

UA1775

Stegbauarten

Bauart 020 Seite 198

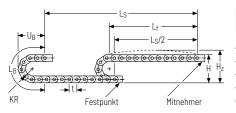
Geschlossener Rahmen

- » Gewichtsoptimierter, geschlossener Kunststoffrahmen mit besonders hoher Torsionssteifigkeit.
- » Außen/Innen: Nicht zu öffnen.

Bauart 030 Seite 199

Rahmen mit außen lösbaren Stegen

- » Gewichtsoptimierter Kunststoffrahmen mit besonders hoher Torsionssteifigkeit.
- » Außen: Aufklappbar und lösbar.

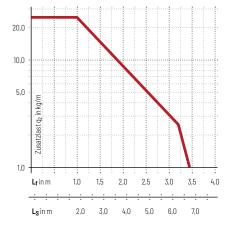

Bauart 040 Seite 200

Rahmen mit innen lösbaren Stegen

- » Gewichtsoptimierter Kunststoffrahmen mit besonders hoher Torsionssteifigkeit.
- » Innen: Aufklappbar und lösbar.

Freitragende Anordnung

KR [mm]	H [mm]	H _z [mm]	L _B [mm]	U _B [mm]
90	257	297	438	206
115	307	347	516	231
140	357	397	595	256
165	407	447	673	281
190	457	497	752	306
240	557	597	909	356
285	647	687	1050	401
340	757	797	1223	456

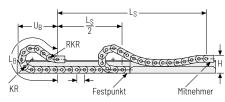

Belastungsdiagramm für freitragende Länge

in Abhängigkeit von der Zusatzlast.

Bei längeren Verfahrwegen ist ein Durchhang der Energieführung je nach Einsatzfall technisch zulässig.

Ketteneigengewicht $q_k = 3,03 \text{ kg/m}$ bei B_i 150 mm. Bei abweichender Innenbreite verändert sich die maximale Zusatzlast.

Geschwindigkeit


bis 10 m/s

bis 6,8 m

Gleitende Anordnung | GO-Modul mit gleit-optimierten Kettengliedern

KR [mm]	H [mm]	GO-Modul RKR [mm]	L _B [mm]	U _B [mm]
90	231	400	1313	643
115	231	400	1440	688
140	231	400	1575	733
165	231	400	1715	779
190	231	400	1868	828
240	231	400	2225	951
285	231	400	2580	1081
340	231	400	3015	1240

Geschwindigkeit bis 3 m/s

Beschleunigung bis 8 m/s²

bis 25 kg/m

Zusatzlast

Das am Mitnehmer montierte GO-Modul ist eine definierte Abfolge von 5 angepassten KR/RKR-Kettenlaschen.

Die gleitende Energieführung muss in einem Kanal

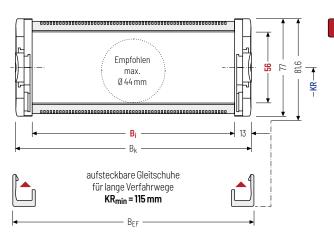
Für eine gleitende Anwendung ist die Verwendung von Gleitschuhen erforderlich.

geführt werden. Siehe S. 866.

Änderungen vorbehalten.

Verfahrweg bis 200 m

Serie EasyTrax® **Stegbauart 020 –** geschlossener Rahmen


- » Gewichtsoptimierter, geschlossener Kunststoffrahmen mit besonders hoher Torsionssteifigkeit.
- » Außen/Innen: Nicht zu öffnen.

Steganordnung an jedem Kettenglied **(VS: vollstegig)**

Der maximale Leitungsdurchmesser ist stark abhängig vom Krümmungsradius und dem gewünschten Leitungstyp. Bitte sprechen Sie uns an.

Berechnung der Kettenlänge

Kettenlänge L_k

$$L_k \approx \frac{L_S}{2} + L_B$$

Kettenlänge L_k aufgerundet auf Teilung t

Anderungen vorbehalten.

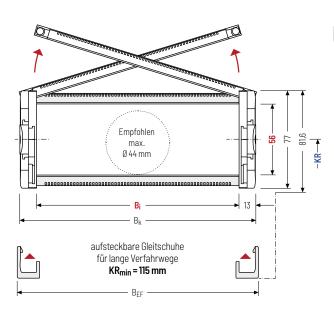
h _i [mm	h _G [mm]	h _{G'} [mm]			B _i [mm]			B _k [mm]	B _{EF} [mm]		KR [mm]		q_k [kg/m]
			100	125	150	175	200			90	115	140	
56	77	81,6	225	250	275	300	325	B _i + 26	B _i + 30	165	190	240	2,844 - 4,239
		[350	375	400					285	340		

Bestellbeispiel

UA1775 Typenreihe	. 020 Stegbauart	. 150 B _i [mm]	. 140 KR [mm]	- 3100 L _k [mm]	VS Steganordnung

UA1775.030 | Abmessungen · Technische Daten

Stegbauart 030 – mit außen aufklappbaren und lösbaren Stegen


- » Gewichtsoptimierter Kunststoffrahmen mit besonders hoher Torsionssteifigkeit.
- » An beliebiger Position nach Links oder Rechts aufklappbar und lösbar.
- » Außen: Aufklappbar und lösbar.

Steganordnung an jedem Kettenglied **(VS: vollstegig)**

Der maximale Leitungsdurchmesser ist stark abhängig vom Krümmungsradius und dem gewünschten Leitungstyp. Bitte sprechen Sie uns an.

Berechnung der Kettenlänge

Kettenlänge L_k

$$L_k \approx \frac{L_S}{2} + L_B$$

Kettenlänge L_k aufgerundet auf Teilung t

h _i [mm]	h _G [mm]	h _{G'} [mm]		B _i [mm]			B _k [mm]	B _{EF} [mm]		KR [mm]		q_k [kg/m]	
			100	125	150	175	200			90	115	140	
56	77	81,6	225	250	275	300	325	B _i + 26	B _i + 30	165	190	240	2,831 - 4,224
			350	375	ፈበበ			[285	340		

Bestellbeispiel

Ellel glene

Kettenkonfiauration

Konstruktionsrichtlinien

> Materialnformationer

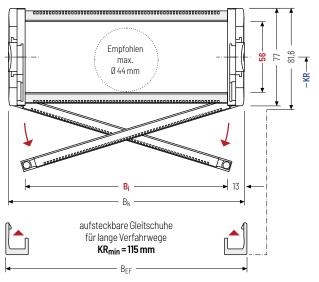
Serie MONO

> sene juickTrax®

serie EasyTrax[®]

UA1775.040 | Abmessungen · Technische Daten

Stegbauart 040 – mit innen aufklappbaren und lösbaren Stegen


- » Gewichtsoptimierter Kunststoffrahmen mit besonders hoher Torsionssteifigkeit.
- » An beliebiger Position nach Links oder Rechts aufklappbar und lösbar.
- » Innen: Aufklappbar und lösbar.

Steganordnung an jedem Kettenglied **(VS: vollstegig)**

- Der maximale Leitungsdurchmesser ist stark abhängig vom Krümmungsradius und dem gewünschten Leitungstyp. Bitte sprechen Sie uns an.
- Die Bauart 040 ist ohne die Verwendung von Gleitschuhen nicht für eine gleitende Anordnung geeignet.

Berechnung der Kettenlänge

Kettenlänge L_k

$$L_k \approx \frac{L_S}{2} + L_B$$

Kettenlänge L_k aufgerundet auf Teilung t

h [mr	i m]	h _G [mm]	h _{G'} [mm]	B _i [mm]					B _k [mm]	B _{EF} [mm]	KR [mm]		q_k [kg/m]
56	3	77	;	100 225					;	R: + 30	 	140 240	2,831 – 4,224
		, ,		350				020	D 1 20		 340		2,001 1,221

Bestellbeispiel

ion Energ

Konstruktionsrichtlinien

Materialinformationen

Serie MONO

Serie uickTrax®

Serie UNIFLEX Advanced

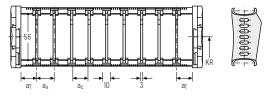
> Serie TKP35

Serie TKK

Trennstegsysteme

Montiert wird das Trennstegsystem standardmäßig an jedem 2. Kettenglied.

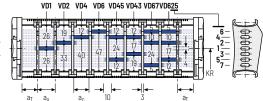
Standardmäßig sind Trennstege bzw. das komplette Trennstegsystem (Trennstege mit Höhenseparierungen) im Querschnitt verschiebbar (Version A).


Für Anwendungen mit Querbeschleunigungen und auf der Seite liegende Anwendungen sind Trennstege mit Arretierungsnocken verfügbar.

Hierbei rasten die Arretierungsnocken in den Rastprofilen der Stege ein (Version B).

Trennstegsystem TSO ohne Höhenunterteilung

Vers.	a _{T min} [mm]			a_{x Raster} [mm]	n T min
Α	5	10	7	-	-
В	5	10	7	2,5	-


Trennsteganzahl bei Bauart 020 abhängig von Bi

Trennstegsystem TS1 mit durchgehender Höhenunterteilung*

Vers.	a_{T min} [mm]		a _{c min} [mm]	a_{x Raster} [mm]	n T min
Α	5	10	7	-	2
В	5	10	7	2,5	2

Bestellbeispiel

Bitte die Bezeichnung des Trennstegsystems (TSO, TS1...), die Version, sowie die Anzahl der Trennstege pro Querschnitt [n_T] angeben.

Bei Verwendung von Trennstegsystemen mit Höhenunterteilung (TS1) bitte zusätzlich die Positionen [z.B. VD1] vom linken Mitnehmerband aus angeben. Sie können Ihrer Bestellung gerne eine Skizze beifügen.

Ånderungen vorbehalten.

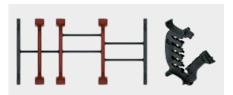
Konstruktions-richtlinien

Serie KP35

UA1775 | Innenaufteilung | TS3

Trennstegsystem TS3 mit Höhenunterteilung aus Kunststoff-Zwischenböden

Standardmäßig wird der Trennsteg Version A zur vertikalen Unterteilung innerhalb der Energieführung eingesetzt. Das komplette Trennstegsystem ist im Querschnitt verschiehbar.

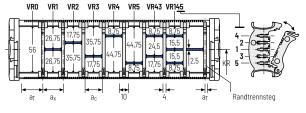

Konstruktions-

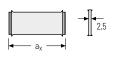
Serie 10N0


Serie KP35

Serie TX

Trennsteg Version A


Randtrennsteg



[mm] [n	nm] [mm]	min
A 5/2*	14 10	2

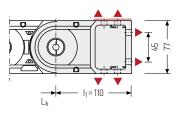
* Bei Randtrennsteg

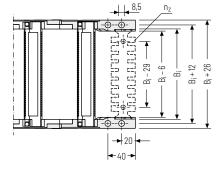
Die Trennstege sind durch die Zwischenböden fixiert, das komplette Trennstegsystem ist im Querschnitt verschiebbar.

					a _x (m	ittena	มมรเล	na ir	enns	tege)	fillilli					
	a _c (Nutzbreite Innenkammer) [mm] 14															
14	16	19	23	24	28	29	32	33	34	38	39	43	44	48	49	54
10	12	15	19	20	24	25	28	29	30	34	35	39	40	44	45	50
58	59	64	68	69	74	78	79	80	84	88	89	94	96	99	112	
54	55	60	64	65	70	74	75	76	80	84	85	90	92	95	108	
58	59	64	68	69	74	78	79	80	84	88	89	94	96	99	112	

Beim Einsatz von Zwischenböden mit ax > 49 mm empfehlen wir eine zusätzliche bevorzugt mittige Abstützung.

Bestellbeispiel




Bitte die Bezeichnung des Trennstegsystems (TSO, TS1...), die Version, sowie die Anzahl der Trennstege pro Querschnitt [n] angeben. Zudem bitte zusätzlich die Kammern [K] von links nach rechts, sowie die Montageabstände [a_T/a_x] eintragen (Mitnehmeransicht).

Bei Verwendung von Trennstegsystemen mit Höhenunterteilung (TS1, TS3) bitte zusätzlich die Positionen [z.B. VD23] vom linken Mitnehmerband aus angeben. Sie können Ihrer Bestellung gerne eine Skizze beifügen.

Universal-Anschlusselemente UMB - Kunststoff (Standard)

Die Universal-Anschlusselemente (UMB) aus Kunststoff lassen sich von oben, von unten oder stirnseitig anschließen.



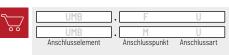
▲ Montagemöglichkeiten

Empfohlenes Anzugsmoment: 27 Nm für Schrauben M8

B_i [mm]	n _z
100	2x 7
125	2x 9
150	2 x 11
175	2 x 13

Optional sind die Anschlusselemente auch **mit** Zugentlastungskamm oder **mit** C-Schiene Art.-Nr. 3931 (1x pro Seite) für Stegeschellen erhältlich. Bitte bei der Bestellung angeben.

Anschlusspunkt


F - Festpunkt

M - Mitnehmer

Anschlussart

U - Universalanschluss

Bestellbeispiel

Wir empfehlen die Verwendung von Zugentlastungen am Mitnehmer und Festpunkt. Siehe ab S. 926.

UA1995

Stegbauarten

Bauart 020 Seite 206

Geschlossener Rahmen

- » Gewichtsoptimierter, geschlossener Kunststoffrahmen mit besonders hoher Torsionssteifigkeit.
- » Außen/Innen: Nicht zu öffnen.

Rahmen mit außen lösbaren Stegen

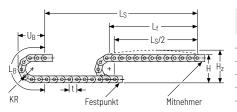
- » Gewichtsoptimierter Kunststoffrahmen mit besonders hoher Torsionssteifigkeit.
- » Außen: durch Drehung zu lösen.

Bauart 040...... Seite 208

Rahmen mit innen lösbaren Stegen

- » Gewichtsoptimierter Kunststoffrahmen mit besonders hoher Torsionssteifigkeit.
- » Innen: durch Drehung zu lösen.

Rahmen mit außen und innen lösbaren Stegen


- » Gewichtsoptimierter Kunststoffrahmen mit besonders hoher Torsionssteifigkeit.
- » Außen/Innen: durch Drehung zu lösen.

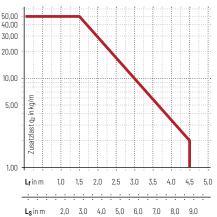
Konstruktions-richtlinien

Serie 10N0

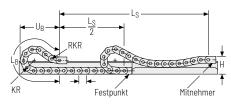
UA1995 | Einbaumaße | Freitragend · Gleitend

Freitragende Anordnung

KR [mm]	H [mm]	H _z [mm]	L _B [mm]	U _B [mm]
150	410	440	680	250
210	530	560	860	310
250	610	640	990	350
300	710	740	1150	400
350	810	840	1300	450
400	910	940	1460	500
500	1110	1140	1770	600


Belastungsdiagramm für freitragende Länge

in Abhängigkeit von der Zusatzlast.


Bei längeren Verfahrwegen ist ein Durchhang der Energieführung je nach Einsatzfall technisch zulässig.

Ketteneigengewicht $q_k = 3,85 \text{ kg/m}$ bei B_i 196 mm. Bei abweichender Innenbreite verändert sich die maximale Zusatzlast.

Gleitende Anordnung | GO-Modul mit gleit-optimierten Kettengliedern*

KR [mm]	H [mm]	GO-Modul RKR [mm]	L _B [mm]	U _B [mm]
150	330	400	1805	890
210	330	400	2180	1010
250	330	400	2390	1070
300	330	400	2690	1160
350	330	400	3090	1310
400	330	400	3490	1450
500	330	400	4280	1740

Anderungen vorbehalten.

Geschwindigkeit bis 8 m/s

Beschleunigung bis 20 m/s²

Zusatzlast bis 50 ka/m

Die gleitende Energieführung muss in einem Kanal geführt werden. Siehe S. 866.

Das am Mitnehmer montierte GO-Modul ist eine definierte Abfolge von 5 angepassten KR/RKR-Kettenlaschen.

Für eine gleitende Anwendung ist die Verwendung von Gleitschuhen erforderlich.

Verfahrweg bis 200 m

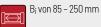
* nur Bauart 070

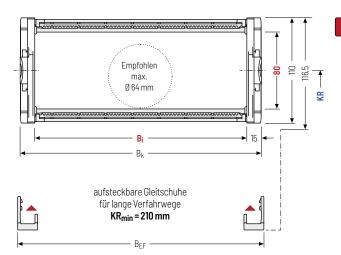
Serie KP35

Serie TKK

UA1995.020 | Abmessungen · Technische Daten

Stegbauart 020 -


geschlossener Rahmen


- » Gewichtsoptimierter, geschlossener Kunststoffrahmen mit besonders hoher Torsionssteifigkeit.
- » Außen/Innen: Nicht zu öffnen.

Steganordnung an jedem Kettenglied (VS: vollstegig)

Der maximale Leitungsdurchmesser ist stark abhängig vom Krümmungsradius und dem gewünschten Leitungstyp. Bitte sprechen Sie uns an.

Berechnung der Kettenlänge

Kettenlänge Lk

$$L_k \approx \frac{L_S}{2} + L_B$$

Kettenlänge Lk aufgerundet auf Teilung t

h _i [mm]	h _G [mm]	h_{G'} [mm]	B i [mm]				B_k [mm]	B _{EF} [mm]		KR [mm]			q_k [kg/m]	
80	110	116,5	85	125	138	150	D 70	B _i + 36	150	210	250	300	7000 7001	
00			180	196	225	250	Di + 30		350	400	500		3,860 – 3,861	

Bestellbeispiel

Ketten-konfiguration Konstruktions-richtlinien

Material-informationen

Serie 10N0

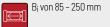
Serie IKP35

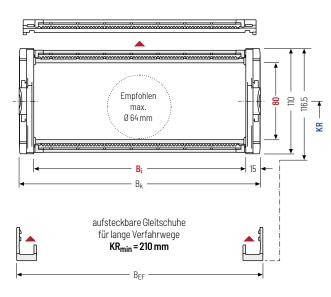
Serie TKK

Konstruktionsrichtlinien

Serie 10N0

UA1995.030 | Abmessungen · Technische Daten


Stegbauart 030 – mit außen lösbaren Stegen


- » Gewichtsoptimierter Kunststoffrahmen mit besonders hoher Torsionssteifigkeit.
- » Außen: durch Drehung zu lösen.

Steganordnung an jedem Kettenglied (VS: vollstegig)

Der maximale Leitungsdurchmesser ist stark abhängig vom Krümmungsradius und dem gewünschten Leitungstyp. Bitte sprechen Sie uns an.

Berechnung der Kettenlänge

Kettenlänge L_k

$$L_k \approx \frac{L_S}{2} + L_B$$

Kettenlänge L_k aufgerundet auf Teilung t

> Serie UNIFLEX

> > Serie TKP35

Serie TKK

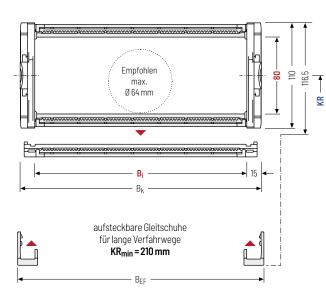
> Serie isyTrax®

hi hg BEF KR hG [mm] [mm] [mm] [mm] [mm] [mm] [mm] [kg/m] 85 125 138 150 150 210 250 300 80 110 116,5 $B_{i} + 30$ $B_{i} + 36$ 3,833 - 3,834 180 196 225 250 350 400 500

Bestellbeispiel

UA1995.040 | Abmessungen · Technische Daten

Stegbauart 040 – mit innen lösbaren Stegen


- » Gewichtsoptimierter Kunststoffrahmen mit besonders hoher Torsionssteifigkeit.
- » Innen: durch Drehung zu lösen.

Steganordnung an jedem Kettenglied **(VS: vollstegig)**

Der maximale Leitungsdurchmesser ist stark abhängig vom Krümmungsradius und dem gewünschten Leitungstyp. Bitte sprechen Sie uns an.

Die Bauart 040 ist ohne die Verwendung von Gleitschuhen nicht für eine gleitende Anordnung geeignet.

Berechnung der Kettenlänge

Kettenlänge L_k

$$L_k \approx \frac{L_S}{2} + L_B$$

Kettenlänge L_k aufgerundet auf Teilung t

h _i [mm]	h _G [mm]	h _{G'}	B i [mm]			B _k [mm]	B _{EF} [mm]		K [m	q_k [kg/m]			
80	110	116 5	85	125	138	150	D. + 70	D. ± 76	150	210	250	300	7077 707/.
ου	110	110,5	180	196	225	250	DI + 00	D + 30	350	210 250 300 400 500		3,033 - 3,034	

Bestellbeispiel

Energieketten

Kettenkonfiguration

Konstruktionsrichtlinien

Materialinformationen

Serie MONO

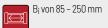
Serie uickTrax®

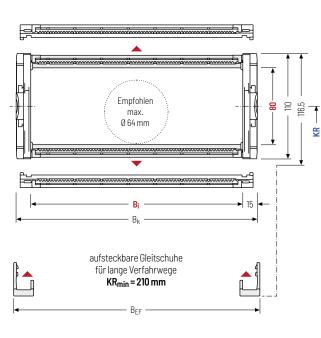
Serie UNIFLEX Advanced

> Serie TKP35

Serie TKK

UA1995.070 | Abmessungen · Technische Daten


Stegbauart 070 – mit außen und innen lösbaren Stegen


- » Gewichtsoptimierter Kunststoffrahmen mit besonders hoher Torsionssteifigkeit.
- » Außen/Innen: durch Drehung zu lösen.

Steganordnung an jedem Kettenglied (VS: vollstegig)

Der maximale Leitungsdurchmesser ist stark abhängig vom Krümmungsradius und dem gewünschten Leitungstyp. Bitte sprechen Sie uns an.

Die Bauart 070 ist ohne die Verwendung von Gleitschuhen nicht für eine gleitende Anordnung geeignet.

Berechnung der Kettenlänge

Kettenlänge L_k

$$L_k \approx \frac{L_S}{2} + L_B$$

Kettenlänge L_k aufgerundet auf Teilung t

h _i [mm]	h _G [mm]	h g' [mm]	E [m	<mark>3</mark> i m]	B _k [mm]	B _{EF} [mm]	KR [mm]	q_k [kg/m]	
80 110	110	116,5	85 125	138 150	D 70	B _i + 36	150 210 250 300	7050 7057	
	IIU	110,5	180 196	225 250	B _i + 30		350 400 500	3,852 – 3,853	

Bestellbeispiel

serie EasyTrax[®]

nergieketten

Kettenonfiguration

Konstruktionsrichtlinien

Materialinformationen

Serie MONO

Serie JuickTrax®

Serie UNIFLEX Advanced

> Serie TKP35

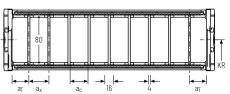
Serie TKK

Serie EasyTrax®

UA1995 | Innenaufteilung | TS0 · TS1

Trennstegsysteme

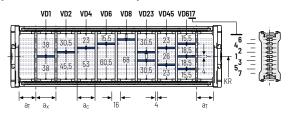
Montiert wird das Trennstegsystem standardmäßig an jedem 2. Kettenglied.

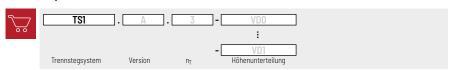

Standardmäßig sind Trennstege bzw. das komplette Trennstegsystem (Trennstege mit Höhenseparierungen) im Ouerschnitt verschiebbar (**Version A**). Für Anwendungen mit Querbeschleunigungen und auf der Seite liegende Anwendungen sind Trennstege mit Arretierungsnocken verfügbar.

Hierbei rasten die Arretierungsnocken in den Rastprofilen der Stege ein **(Version B)**.

Trennstegsystem TSO ohne Höhenunterteilung

Vers.				a_{x Raster} [mm]	
Α	10	16	12	-	-
В	10	17,5	13,5	2,5	-




Trennstegsystem TS1 mit durchgehender Höhenunterteilung*

Vers.			[mm]	a_{x Raster} [mm]	min
Α	10	16	12	-	2
В	10	17,5	13,5	2,5	2

^{*} nicht Bauart 020

Bestellbeispiel

Bitte die Bezeichnung des Trennstegsystems **(TS0, TS1...)**, die Version, sowie die Anzahl der Trennstege pro Querschnitt $[n_T]$ angeben.

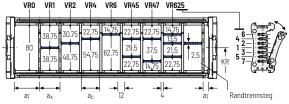
Bei Verwendung von Trennstegsystemen mit Höhenunterteilung (TSI) bitte zusätzlich die Positionen [z.B. VD1] vom linken Mitnehmerband aus angeben. Sie können Ihrer Bestellung gerne eine Skizze beifügen.

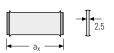
UA1995 | Innenaufteilung | TS3

Trennstegsystem TS3 mit Höhenunterteilung aus Kunststoff-Zwischenböden


Standardmäßig wird der Trennsteg **Version A** zur vertikalen Unterteilung innerhalb der Energieführung eingesetzt. Das komplette Trennstegsystem ist im Querschnitt verschiebbar.

Trennsteg Version A


Randtrennsteg



Trennsteganzahl bei Bauart 020 abhängig von Bi * Bei Randtrennsteg

Die Trennstege sind durch die Zwischenböden fixiert, das komplette Trennstegsystem ist im Ouerschnitt verschiebbar.

	a _x (Mittenabstand Trennstege) [mm]															
a _c (Nutzbreite Innenkammer) [mm]																
14	16	19	23	24	28	29	32	33	34	38	39	43	44	48	49	54
10	12	15	19	20	24	25	28	29	30	34	35	39	40	44	45	50
58	59	64	68	69	74	78	79	80	84	88	89	94	96	99	112	
54	55	60	64	65	70	74	75	76	80	84	85	90	92	95	108	

Beim Einsatz von **Kunststoff-Zwischenböden mit a_x > 49 mm** ist eine zusätzliche mittige Abstützung notwendig.

Bestellbeispiel

Bitte die Bezeichnung des Trennstegsystems (**TSO, TS1...**), die Version, sowie die Anzahl der Trennstege pro Querschnitt [n_T] angeben. Zudem bitte zusätzlich die Kammern [K] von links nach rechts, sowie die Montageabstände [a_T/a_x] eintragen (Mitnehmeransicht).

Bei Verwendung von Trennstegsystemen mit Höhenunterteilung **(TS1, TS3)** bitte zusätzlich die Positionen [z.B. VD23] vom linken Mitnehmerband aus angeben. Sie können Ihrer Bestellung gerne eine Skizze beifügen.

Energieketten

Kettenonfiquration

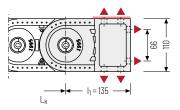
Konstruktionsrichtlinien

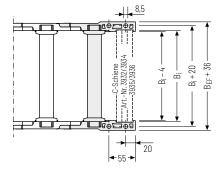
> Materialinformatione

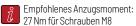
MONO

serie JuickTrax®

Serie


Serie TKP35

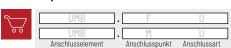

Serie


Universal-Anschlusselemente UMB - Kunststoff (Standard)

Die Universal-Anschlusselemente (UMB) aus Kunststoff lassen sich von oben, von unten oder stirnseitig anschließen.

▲ Montagemöglichkeiten

Anschlusspunkt


F - Festpunkt

M - Mitnehmer

Anschlussart

U - Universalanschluss

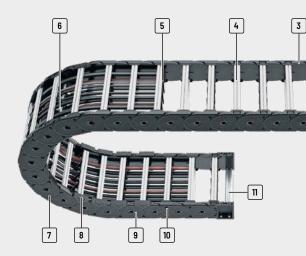
Bestellbeispiel

Wir empfehlen die Verwendung von Zugentlastungen am Mitnehmer und Festpunkt. Siehe ab S. 926.

Weitere Produktinformationen online

Montageanleitungen uvm.: Mehr Infos auf Ihrem Smartphone oder unter

tsubaki-kabelschlepp.com/ downloads



Konfigurieren Sie hier Ihre Energieführungskette: online-engineer.de

erie ×

- 1 Aluminiumstege im 1mm Breitenraster lieferbar
- 2 Günstiges Verhältnis von Innen- zu Außen-
- 3 Kettenlaschen aus mindestens 35 % sortenreinem Regranulat
- 4 Innen und außen zur Leitungsbelegung schnell zu öffnen
- 5 Fixierbare Trennstege
- 6 Vielfältige Separierungsmöglichkeiten der Leitungen
- 7 Robustes doppeltes Anschlagsystem für große freitragende Längen
- 8 Auswechselbare Gleitschuhe
- 9 Sehr leise durch interne Geräuschdämpfung
- 10 Seitliche Verschleißflächen

1

11 C-Schiene für Zugentlastungselemente

Eigenschaften

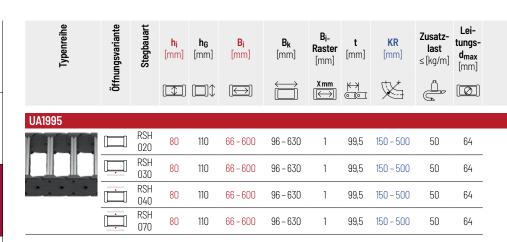
- » Vier Bauarten: Geschlossen sowie innen, außen und beidseitig öffenbar
- » Gutes Verhältnis von Innen- zu Außenbreite
- » Einfache Montage und schnelle Leitungsbelegung
- » UMB-Anschlussstücke aus stabilem Kunststoff (Festigkeiten vergleichbar Aluminium)
- » Verschleißarmes, leitungsschonendes Design mit glatterer Haptik
- » Polygonoptimierte Krümmungsradien für ruhigen und verschleißarmen Kettenablauf

2

Seitliche Verschleißflächen - für lange Lebensdauer bei auf der Seite liegenden Anwendungen

Hintergriffe am Anschlag zur besseren Krafteinleitung und höheren Festigkeiten

Auswechselbare Gleitschuhe - optional mit automatischer Verschleißüberwachung


Anderungen vorbehalten.

UMR-Anschlussstücke aus stabilem Kunststoff (Festigkeiten vergleichbar Aluminium)

Serie K

Serie UNIFLEX Advanced | Übersicht

Serie M

Serie TKHP

Serie XL

Serie QUANTUM®

Serie TKR

Serie TKA

Serie UNIFLEX Advanced | Übersicht

Freitrag	ende Ano	rdnung	Gleiter	nde Anord	Inung		Innenau	fteilung		Bewegung			Seite	
$\begin{array}{c} \textbf{Verfahr-}\\ \textbf{weg}\\ \leq [m] \end{array}$	v _{max} ≤[m/s]	a_{max} ≤[m/s ²]	$\begin{array}{c} \text{Verfahr-} \\ \text{weg} \\ \leq [m] \end{array}$	v _{max} ≤[m/s]	a_{max} ≤[m/s ²]	TS0	TS1	TS2	TS3	vertikal hängend oder stehend	auf der Seite liegend	Drehbewegung	S.	
			€					H		vertikal l oder	a	Drehl		
9	10	25	200	8	20	•	-	-	•	•	•	•	350	
9	10	25	200	8	20	•	•	-	•	•	•	•	351	
9	10	25	200	8	20	•	•	-	•	•	•	•	352	
9	10	25	200	8	20	•	•	-	•	•	•	•	353	

UA1995

Stegbauarten

Bauart RSH 020 Seite 350

Geschlossener Rahmen

- » Aluminium-Profilstäbe für leichte bis mittlere Belastungen. Montage ohne Schrauben.
- » Außen/Innen: Nicht zu öffnen.

Bauart RSH 030 Seite 351

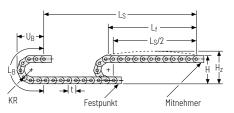
Rahmen mit außen lösbaren Stegen

- » Aluminium-Profilstäbe für leichte bis mittlere Belastungen. Montage ohne Schrauben.
- » Außen: durch Drehung zu lösen.

Bauart RSH 040...... Seite 352

Rahmen mit innen lösbaren Stegen

- » Aluminium-Profilstäbe für leichte bis mittlere Belastungen. Montage ohne Schrauben.
- » Innen: durch Drehung zu lösen.



Bauart RSH 070 Seite 353

Rahmen mit außen und innen lösbaren Stegen

- » Aluminium-Profilstäbe für leichte bis mittlere Belastungen. Montage ohne Schrauben.
- » Außen/Innen: durch Drehung zu lösen.

Freitragende Anordnung

KR [mm]	H [mm]	H _z [mm]	L _B [mm]	U _B [mm]
150	410	440	680	250
210	530	560	860	310
250	610	640	990	350
300	710	740	1150	400
350	810	840	1300	450
400	910	940	1460	500
500	1110	1140	1770	600

Serie PROTUM®

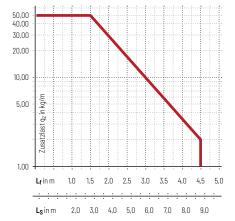
erie ×

Serie M

Serie FAP

Serie XL

ierie TKR


Serie TKA

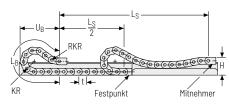
Belastungsdiagramm für freitragende Länge

in Abhängigkeit von der Zusatzlast.

Bei längeren Verfahrwegen ist ein Durchhang der Energieführung je nach Einsatzfall technisch zulässig.

Ketteneigengewicht $q_k = 3,85 \text{ kg/m}$ bei B_i 196 mm. Bei abweichender Innenbreite verändert sich die maximale Zusatzlast.

Geschwindigkeit bis 10 m/s



Verfahrweg bis 9 m

Zusatzlast bis 50 ka/m

Gleitende Anordnung | GO-Modul mit gleit-optimierten Kettengliedern*

KR [mm]	H [mm]	GO-Modul RKR [mm]	L _B [mm]	U _B [mm]
150	330	400	1805	890
210	330	400	2180	1010
250	330	400	2390	1070
300	330	400	2690	1160
350	330	400	3090	1310
400	330	400	3490	1450
500	330	400	4280	1740

Geschwindigkeit bis 8 m/s

Beschleunigung bis 20 m/s²

Zusatzlast bis 50 ka/m

aeführt werden. Siehe S. 866.

Das am Mitnehmer montierte GO-Modul ist eine definierte Abfolge von 5 angepassten KR/RKR-Kettenlaschen.

Die gleitende Energieführung muss in einem Kanal

Für eine gleitende Anwendung ist die Verwendung von Gleitschuhen erforderlich.

Anderungen vorbehalten.

Verfahrweg bis 200 m

* nur Bauart 070

Serie ×

Serie UNIFLEX Advanced

> Serie M

Serie TKTP

Serie XL

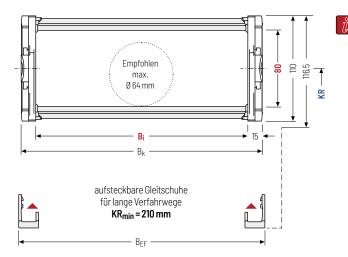
Serie QUANTUM®

Serie TKR

Serie TKA

UA1995 RSH 020 | Abmessungen · Technische Daten

Stegbauart RSH 020 - geschlossener Rahmen


- » Aluminium-Profilstäbe für leichte bis mittlere Belastungen. Montage ohne Schrauben.
- » Kundenindividuell im 1 mm Raster lieferbar.
- » Außen/Innen: Nicht zu öffnen.

Steganordnung an jedem Kettenglied **(VS: vollstegig)**

Der maximale Leitungsdurchmesser ist stark abhängig vom Krümmungsradius und dem gewünschten Leitungstyp. Bitte sprechen Sie uns an.

Berechnung der Kettenlänge

Kettenlänge L_k

$$L_k \approx \frac{L_S}{2} + L_B$$

Kettenlänge L_k aufgerundet auf Teilung t

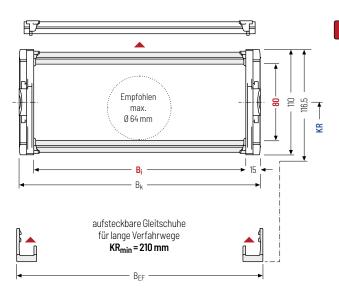
h _i	h _G	h gʻ	B i [mm]*	B _k [mm]	B EF	KR [mm]	q_k [kg/m]
,	٠,					150 210 250 300 350 400 500	.,.

* im 1 mm Breitenraster

Bestellbeispiel

UA1995 RSH 030 | Abmessungen · Technische Daten

Stegbauart RSH 030 – mit außen lösbaren Stegen


- » Aluminium-Profilstäbe für leichte bis mittlere Belastungen. Montage ohne Schrauben.
- » Kundenindividuell im 1mm Raster lieferbar.
- » Außen: durch Drehung zu lösen.

Steganordnung an jedem Kettenglied (VS: vollstegig)

Der maximale Leitungsdurchmesser ist stark abhängig vom Krümmungsradius und dem gewünschten Leitungstyp. Bitte sprechen Sie uns an.

Berechnung der Kettenlänge

Kettenlänge L_k

$$L_k \approx \frac{L_S}{2} + L_B$$

 $\label{eq:KettenlängeLkaufgerundet} \text{ Kettenlänge}\,L_k\,\text{aufgerundet}\\ \text{ auf Teilung}\,t$

h _i h _G h _{G'}	B _i	B _k	B _{EF}	KR	q_k
[mm] [mm] [mm]	[mm]*	[mm]	[mm]	[mm]	[kg/m]
80 110 116,5	66 – 600	B _i + 30	B _i + 36	150 210 250 300 350 400 500	4,192 - 4,197

^{*} im 1 mm Breitenraster

Bestellbeispiel

Serie PROTUM®

Serie ×

Serie UNIFLEX Advanced

Serie M

Serie TKHP

Serie XL

> Serie JANTUM®

Serie TKR

Serie TKA

Serie UAT

Änderungen vorbehalten.

Serie ×

Serie UNIFLEX Advanced

> Serie M

Serie TKTP

Serie XL

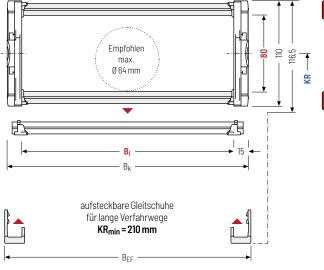
Serie QUANTUM®

Serie TKR

Serie TKA

UA1995 RSH 040 | Abmessungen · Technische Daten

Stegbauart RSH 040 – mit innen lösbaren Stegen


- » Aluminium-Profilstäbe für leichte bis mittlere Belastungen. Montage ohne Schrauben.
- » Kundenindividuell im 1 mm Raster lieferbar.
- » Innen: durch Drehung zu lösen.

Steganordnung an jedem Kettenglied **(VS: vollstegig)**

- Der maximale Leitungsdurchmesser ist stark abhängig vom Krümmungsradius und dem gewünschten Leitungstyp. Bitte sprechen Sie uns an.
- Die Bauart RSH 040 ist ohne die Verwendung von Gleitschuhen nicht für eine gleitende Anordnung geeignet.

Berechnung der Kettenlänge

Kettenlänge L_k

$$L_k \approx \frac{L_S}{2} + L_B$$

Kettenlänge L_k aufgerundet auf Teilung t

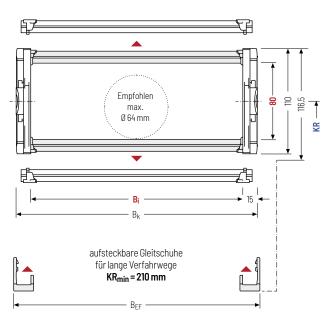
hį	h_G	h _{G'}	B _i	B _k	B _{EF}	KR	q_k
[mm]	[mm]	[mm]	[mm]*	[mm]	[mm]	[mm]	[kg/m]
80	110	116,5	66 – 600	B _i + 30	B _i + 36	150 210 250 300 350 400 500	4,192 - 4,197

^{*} im 1 mm Breitenraster

Bestellbeispiel

UA1995 RSH 070 | Abmessungen · Technische Daten

Stegbauart RSH 070 – mit außen und innen lösbaren Stegen


- » Aluminium-Profilstäbe für leichte bis mittlere Belastungen. Montage ohne Schrauben.
- » Kundenindividuell im 1mm Raster lieferbar.
- » Außen/Innen: durch Drehung zu lösen.

Steganordnung an jedem Kettenglied (VS: vollstegig)

Der maximale Leitungsdurchmesser ist stark abhängig vom Krümmungsradius und dem gewünschten Leitungstyp. Bitte sprechen Sie uns an.

Die Bauart RSH 070 ist ohne die Verwendung von Gleitschuhen nicht für eine gleitende Anordnung geeignet.

Berechnung der Kettenlänge

Kettenlänge L_k

$$L_k \approx \frac{L_S}{2} + L_B$$

Kettenlänge L_k aufgerundet auf Teilung t

h _i	h _G	h _{G'}	B _i	B _k	BEF	KR	q k
[mm]	[mm]	[mm]	[mm]*	[mm]	[mm]	[mm]	[kg/m]
80	110	116,5	66 – 600	B _i + 30	B _i + 36	150 210 250 300 350 400 500	4,211 – 4,216

^{*} im 1 mm Breitenraster

Bestellbeispiel

Serie PROTUM®

Serie ×

UNIFLEX Advanced

Serie M

Serie TKHP

Serie XL

> Serie JANTUM®

Serie TKR

Serie TKA

UA1995 | Innenaufteilung | TS0 · TS1

Serie ROTUM®

Serie X

Serie UNIFLEX

> Serie M

Serie TKHP

Serie XL

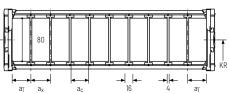
Serie JUANTUM®

Serie TKR

Serie TKA

Serie UAT Trennstegsysteme

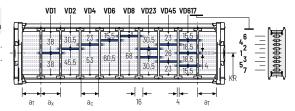
Montiert wird das Trennstegsystem standardmäßig an jedem 2. Kettenglied.


Standardmäßig sind Trennstege bzw. das komplette Trennstegsystem (Trennstege mit Höhenseparierungen) im Ouerschnitt verschiebbar (**Version A**).

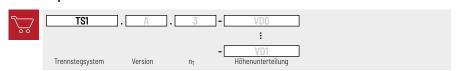
Für Anwendungen mit Querbeschleunigungen und auf der Seite liegende Anwendungen sind die Trennstege durch eines im Zubehör erhältlichen Fixierprofils fixierbar (Version B). Das Fixierprofil muss werkseitig verbaut werden.

Trennstegsystem TSO ohne Höhenunterteilung

Vers.				a_{x Raster} [mm]	
Α	10	16	12	-	-
В	10	17,5	13,5	2,5	-
		•	• • • • • • • • • • • • • • • • • • • •	•••••	•



M000000000


Trennstegsystem TS1 mit durchgehender Höhenunterteilung*

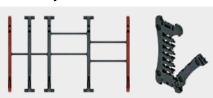
Vers.				a_{x Raster} [mm]	
Α	10	16	12	-	2
В	10	17,5	13,5	2,5	2

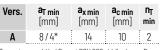
Bestellbeispiel

Bitte die Bezeichnung des Trennstegsystems **(TS0, TS1...)**, die Version, sowie die Anzahl der Trennstege pro Querschnitt $[n_T]$ angeben.

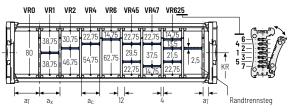
Bei Verwendung von Trennstegsystemen mit Höhenunterteilung (TSI) bitte zusätzlich die Positionen [z.B. VD1] vom linken Mitnehmerband aus angeben. Sie können Ihrer Bestellung gerne eine Skizze beifügen.

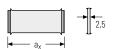
UA1995 | Innenaufteilung | TS3


Trennstegsystem TS3 mit Höhenunterteilung aus Kunststoff-Zwischenböden


Standardmäßig wird der Trennsteg **Version A** zur vertikalen Unterteilung innerhalb der Energieführung eingesetzt. Das komplette Trennstegsystem ist im Querschnitt verschiebbar.

Trennsteg Version A


Randtrennsteg



Trennsteganzahl bei Bauart RSH 020 abhängig von B_i
* Bei Randtrennsteg

Die Trennstege sind durch die Zwischenböden fixiert, das komplette Trennstegsystem ist im Querschnitt verschiebbar.

	a _x (Mittenabstand Trennstege) [mm]															
	a _c (Nutzbreite Innenkammer) [mm]															
14	16	19	23	24	28	29	32	33	34	38	39	43	44	48	49	54
10	12	15	19	20	24	25	28	29	30	34	35	39	40	44	45	50
58	59	64	68	69	74	78	79	80	84	88	89	94	96	99	112	
54	55	60	64	65	70	74	75	76	80	84	85	90	92	95	108	

Beim Einsatz von Kunststoff-Zwischenböden mit $a_x > 49 \ mm$ ist eine zusätzliche mittige Abstützung notwendig.

Bestellbeispiel

Bitte die Bezeichnung des Trennstegsystems **(TS0, TS1...)**, die Version, sowie die Anzahl der Trennstege pro Querschnitt $[n_T]$ angeben. Zudem bitte zusätzlich die Kammern [K] von links nach rechts, sowie die Montageabstände $[a_T/a_X]$ eintragen (Mitnehmeransicht).

Bei Verwendung von Trennstegsystemen mit Höhenunterteilung **(TS1, TS3)** bitte zusätzlich die Positionen [z.B. VD23] vom linken Mitnehmerband aus angeben. Sie können Ihrer Bestellung gerne eine Skizze beifügen.

Serie PROTUM®

Serie K

> UNIFLEX Advanced

Serie M

Serie TKHP

Serie XL

JANTUM®

Serie TKR

Serie TKA

Änderungen vorbehalten.

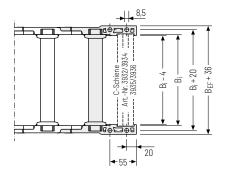
Serie PROTUM®

Serie K

Serie UNIFLEX Advanced

> Serie M

Serie TKHP


Serie XL

Serie QUANTUM®

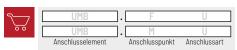
Serie TKA

Serie TKR

Die Universal-Anschlusselemente (UMB) aus Kunststoff lassen sich von oben, von unten oder stirnseitig anschließen.

▲ Montagemöglichkeiten

Anschlusspunkt


F - Festpunkt

M - Mitnehmer

Anschlussart

U - Universalanschluss

Bestellbeispiel

Wir empfehlen die Verwendung von Zugentlastungen am Mitnehmer und Festpunkt. Siehe ab S. 926.

Weitere Produktinformationen online

Montageanleitungen uvm.: Mehr Infos auf Ihrem Smartphone oder unter

tsubaki-kabelschlepp.com/ downloads

Konfigurieren Sie hier Ihre Energieführungskette: **online-engineer.de** Serie PROTUM®

šerie K

UNIFLEX

Serie M

Serie TKHP

Serie XL

> Serie UANTUM®

Serie TKR

Serie TKA